Đề bài

Mạch điện xoay chiều gồm một điện trở, một cuộn dây và một tụ điện ghép nối tiếp (\(H.15.2).\) Điện áp tức thời giữa hai đầu đoạn mạch \(u = 65\sqrt 2 cos100\pi t(V).\)

Các điện áp hiệu dụng \({U_{AM}} = 13V;{U_{MN}} = 13V;{U_{NB}} = 65V.\)

a) Chứng tỏ rằng cuộn dây có điện trở thuần \(r \ne 0.\)

b) Tính hệ số công suất của mạch.

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính điện áp \(U_{AB}^2 = {({U_R} + {U_r})^2} + {({U_L} - {U_C})^2}\)

Sử dụng công thức tính hệ số công suất \(\cos \varphi  = \dfrac{{{U_R} + {U_r}}}{{{U_{AB}}}}\)

Lời giải chi tiết

a) Xét \(U_{AM}^2 + {({U_{MN}} - {U_{NB}})^2} \\= {13^2} + {(13 - 65)^2} = 2873\)

\(U_{AB}^2 = {65^2} = 4225\)

Nhận thấy \(U_{AB}^2 \ne {U_{AM}}^2 + {({U_{MN}} - {U_{NB}})^2}\)

Vậy trong cuộn dây còn có điện trở \(r\)

b) Ta có:

\(\begin{array}{l}U_{MN}^2 = U_r^2 + U_L^2\\ \Rightarrow {U_L} = \sqrt {U_{MN}^2 - U_r^2}  = \sqrt {{{13}^2} - U_r^2} (1)\end{array}\)

\(\begin{array}{l}U_{AB}^2 = {({U_R} + {U_r})^2} + {({U_L} - {U_C})^2}\\ \Leftrightarrow {65^2} = {(13 + {U_r})^2} + {({U_L} - 65)^2}(2)\end{array}\)

Từ (1)(2)\( \Rightarrow {65^2} = {(13 + {U_r})^2} + {(\sqrt {{{13}^2} - U_r^2}  - 65)^2}\)

Giải được \({U_r} = 12V;{U_L} = 5V\)

Hệ số công suất đoạn mạch \(\cos \varphi  = \dfrac{{{U_R} + {U_r}}}{{{U_{AB}}}} = \dfrac{{13 + 12}}{{65}} = \dfrac{5}{{13}}\)

soanvan.me