Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình

LG a

\(f’(x) = g(x)\) với \(f(x) = \sin^3 2x\) và \(g(x) = 4\cos2x – 5\sin4x\)

Phương pháp giải:

Tính \(f'(x)\), đưa phương trình về dạng tích và giải phương trình lượng giác cơ bản, sử dụng công thức nhân đôi: \(\sin 4x = 2\sin 2x\cos 2x\)

Lời giải chi tiết:

Ta có: \(f(x) = \sin^3 2x\) 

\(⇒  f’(x) = 3\sin^2 2x (\sin2x)’ = 6\sin^2 2x \cos2x\)

Do đó:

\(\eqalign{
& f'(x) = g(x)\cr& \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 5\sin 4x \cr 
& \Leftrightarrow 6si{n^2}2x\cos 2x = 4\cos 2x - 10\sin 2x\cos 2x \cr 
& \Leftrightarrow \cos 2x(3{\sin ^2}2x + 5\sin 2x - 2) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0\,\,\,\,\,\,(1) \hfill \cr 
3{\sin ^2}2x + 5\sin 2x - 2 = 0 \,\,\,\, (2)\hfill \cr} \right. \cr} \)

Giải (1): \(2x = {\pi  \over 2} + k\pi \,\,(k \in \mathbb Z) \Leftrightarrow x = {\pi  \over 4} + {{k\pi } \over 2} (k \in \mathbb Z)\)

Giải (2): \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = - 2\,\,\left( {ktm} \right)\\\sin 2x = \frac{1}{3}\,\,\,\,\,\left( {tm} \right)\end{array} \right.\)

\(\eqalign{
& \sin 2x = {1 \over 3} \Leftrightarrow \left[ \matrix{
2x = \arcsin ({1 \over 3}) + k2\pi \hfill \cr 
2x = \pi - \arcsin ({1 \over 3}) + k2\pi \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr 
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z \cr} \)

Tóm lại, phương trình đã cho có ba nghiệm là:

\(\left[ \matrix{
x = {\pi \over 4} + {{k\pi } \over 2} \hfill \cr 
x = {1 \over 2}\arcsin ({1 \over 3}) + {k\pi }  \hfill \cr 
x = {\pi \over 2} - {1 \over 2}\arcsin ({1 \over 2}) + {k\pi }  \hfill \cr} \right.;k \in \mathbb Z\)

LG b

\(f’(x) = 0\) với \(f(x) = 20\cos 3x + 12\cos 5x – 15\cos 4x\).

Phương pháp giải:

Tính \(f'(x)\)

Sử dụng công thức biến đổi tổng thành tích: \(\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\)

Đưa phương trình về dạng tích và giải phương trình lượng giác cơ bản.

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}
f'\left( x \right) = 20.\left( {\cos 3x} \right)' + 12\left( {\cos 5x} \right)' - 15\left( {\cos 4x} \right)'\\
= 20.\left( { - 3\sin 3x} \right) + 12.\left( { - 5\sin 5x} \right) - 15.\left( { - 4\sin 4x} \right)\\
= - 60\sin 3x - 60\sin 5x + 60\sin 4x
\end{array}\)

Do đó:

\(\eqalign{
& f'(x) = 0 \Leftrightarrow  - 60\sin 3x - 60\sin 5x + 60\sin 4x = 0\cr &- \sin 3x - \sin 5x + \sin 4x = 0 \cr 
& \Leftrightarrow \sin 5x + \sin 3x - \sin 4x=0 \cr 
& \Leftrightarrow 2\sin 4x{\mathop{\rm cosx}\nolimits} - sin4x = 0 \cr 
& \Leftrightarrow sin4x(2cosx - 1) = 0 \cr} \)

\(\eqalign{
& \Leftrightarrow \left[ \matrix{
\sin 4x = 0 \hfill \cr 
{\mathop{\rm cosx}\nolimits} = {1 \over 2} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
4x = k\pi \hfill \cr 
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = k{\pi \over 4} \hfill \cr 
x = \pm {\pi \over 3} + k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

soanvan.me