Đề bài

Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right| = 3\)?

A. Vô số

B. 1

C. 2

D. 3

Phương pháp giải - Xem chi tiết

Áp dụng tính chất trọng tâm G của tam giác ABC:

\(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Lời giải chi tiết

Gọi G là trọng tâm của tam giác ABC, ta có: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = 3\overrightarrow {MG} \)

Do đó \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right| = 3 \Leftrightarrow \left| {3\overrightarrow {MG} } \right| = 3\) hay \(MG = 1\)

Vậy tập hợp các điểm M thỏa mãn là đường tròn tâm G, bán kính 1.

Nói cách khác có vô số điểm M thỏa mãn ycbt.

Chọn A.