Đề bài
Từ một điểm \(A\) nằm bên ngoài đường tròn \((O)\), kẻ các tiếp tuyến \(AB,\ AC\) với đường tròn (\(B,\ C\) là các tiếp điểm). Qua điểm \(M\) thuộc cung nhỏ \(BC\), kẻ tiếp tuyến với đường tròn \(O\), nó cắt các tiếp tuyến \(AB\) và \(AC\) theo thứ tự ở \(D\) và \(E\). Chứng minh rằng chu vi tam giác \(ADE\) bằng \(2AB\).
Phương pháp giải - Xem chi tiết
- Dùng tính chất hai tiếp tuyến cắt nhau, tìm cặp đoạn thẳng bằng nhau.
- Xác định chu vi \(\Delta ADE\) bằng tổng của các đoạn thẳng nào, thay các đoạn thẳng chưa thuộc \(AB,AC\) bằng những đoạn thẳng thuộc \(AB,AC\).
Lời giải chi tiết
Chu vi tam giác \(ADE\) bằng \(AD + DE + AE \) \(= AD + DM + ME + AE\,{\rm{ (1)}}\)
Theo tính chất của hai tiếp tuyến cắt nhau, ta có
\(DM = DB\,{\rm{ (2)}}\)
\(ME = EC{\rm{ }}\left( 3 \right)\)
Từ \(\left( 1 \right);\left( 2 \right);\left( 3 \right)\) suy ra
\(AD + DM + ME + AE \)\(= AD + BD + EC + AE\)\( = AB + AC\)
Ta lại có \(AB = AC\) nên chu vi tam giác \(ADE\) bằng \(2AB.\)
soanvan.me