Cho hai phương trình :
\(\displaystyle {{7x} \over 8} - 5\left( {x - 9} \right) = {1 \over 6}\left( {20x + 1,5} \right)\) \((1)\)
\(2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3\) \((2)\)
LG a
Chứng tỏ rằng phương trình \((1)\) có nghiệm duy nhất, tìm nghiệm đó.
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
Nhân hai vế của phương trình \((1)\) với \(24\), ta được :
\(\displaystyle 24.\left[{{7x} \over 8} - 5\left( {x - 9} \right)\right] = 24.\left[{1 \over 6}\left( {20x + 1,5} \right)\right]\)
\(\eqalign{ &\Leftrightarrow 21x - 120\left( {x - 9} \right) = 4\left( {20x + 1,5} \right) \cr & \Leftrightarrow 21x - 120x - 80x = 6 - 1080 \cr & \Leftrightarrow - 179x = - 1074 \cr & \Leftrightarrow x = 6 \cr} \)
Vậy phương trình \((1)\) có một nghiệm duy nhất \(x = 6\).
LG b
Giải phương trình \((2)\) khi \(a = 2\).
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
Ta có:
\(\eqalign{ & 2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3 \cr & \Leftrightarrow \left( {a - 2} \right)x = a + 3 \quad \quad (3)\cr} \)
Thay \(a=2\) vào phương trình (3) ta được: \((2-2)x=2+3\Leftrightarrow 0x=5\) (vô nghiệm)
Suy ra phương trình \((2)\) vô nghiệm.
LG c
Tìm giá trị của a để phương trình \((2)\) có một nghiệm bằng một phần ba nghiệm của phương trình \((1)\).
Phương pháp giải:
Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau :
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\).
Lời giải chi tiết:
Theo điều kiện của bài toán, nghiệm của phương trình \((2)\) bằng một phần ba nghiệm của phương trình \((1)\) mà phương trình (1) có nghiệm \(x=6\) (theo câu a) nên nghiệm của phương trình (2) là \(x=2\).
Theo câu b ta biến đổi được phương trình (2) thành phương trình \(\left( {a - 2} \right)2 = a + 3\) (3) nên lúc này \(x = 2\) là nghiệm của phương trình (3).
Thay giá trị \(x = 2\) vào phương trình (3), ta được \(\left( {a - 2} \right).2 = a + 3\).
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
\(\left( {a - 2} \right).2 = a + 3\)\(\Leftrightarrow 2a-4=a+3\)
\(\Leftrightarrow 2a-a=3+4 \Leftrightarrow a = 7\)
Vậy với \(a= 7\) thì phương trình \((2)\) có nghiệm \(x = 2\) thỏa mãn yêu cầu bài toán.
soanvan.me