Đề bài

Thể tích của khối tròn xoay tạo nên do quay quanh trục \(\displaystyle  Ox\) hình phẳng giới hạn bởi các đường \(\displaystyle  y = {\left( {1 - x} \right)^2},y = 0\), \(\displaystyle  x = 0\) và \(\displaystyle  x = 2\) bằng

A. \(\displaystyle  \frac{{8\pi \sqrt 2 }}{3}\)              B. \(\displaystyle  \frac{{2\pi }}{5}\)

C. \(\displaystyle  \frac{{5\pi }}{2}\)                     D. \(\displaystyle  2\pi \)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính thể tích \(\displaystyle  V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  V = \pi \int\limits_0^2 {{{\left[ {{{\left( {1 - x} \right)}^2}} \right]}^2}dx} \) \(\displaystyle   = \pi \int\limits_0^2 {{{\left( {x - 1} \right)}^4}dx} \) \(\displaystyle   = \pi .\left. {\frac{{{{\left( {x - 1} \right)}^5}}}{5}} \right|_0^2 = \pi \left( {\frac{1}{5} + \frac{1}{2}} \right) = \frac{{2\pi }}{5}\).

Chọn B.

soanvan.me