Đề bài
Vẽ hình vuông \(ABCD\) tâm \(O\) rồi vẽ tam giác đều có một đỉnh là \(A\) và nhận \(O\) làm tâm. Nêu cách vẽ.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Hình vuông là có hai đường chéo bằng nhau, cắt nhau tại trung điểm mỗi đường, và hai đường chéo vuông góc với nhau.
+) Tam giác đều có các cạnh, các góc bằng nhau bằng \(60^\circ.\)
+) Bất kì đa giác nào cũng có một và chỉ một đường tròn ngoại tiếp.
Lời giải chi tiết
Cách vẽ:
− Vẽ đường tròn \((O; R)\)
− Kẻ \(2\) đường kính \(AC ⊥ BD\)
− Nối \(AB, BC, CD, DA\) ta được tứ giác \(ABCD\) là hình vuông nội tiếp trong đường tròn \((O; R)\)
− Từ \(A\) đặt liên tiếp các cung bằng nhau có dây tương ứng bằng bán kính \(R\) là:
\(\overparen{{A}{A_1}},\) \(\overparen{{A_1}{A_2}},\) \(\overparen{{A_2}{C}},\) \(\overparen{{C}{A_3}},\) \(\overparen{{A_3}{A_4}}\)
Nối \({{A}{A_2}},\)\({{A_2}{A_3}},\)\({{A_3}{A}},\) ta có \(∆{{A}{A_2}{A_3}},\) là tam giác đều nhận \(O\) làm tâm.
Chứng minh:
Vì các cung \(\overparen{{A}{A_1}},\) \(\overparen{{A_1}{A_2}},\) \(\overparen{{A_2}{C}},\) \(\overparen{{C}{A_3}},\) \(\overparen{{A_3}{A_4}}\) bằng nhau nên ta có:
\(\overparen{{A}{A_2}}\)\(=\overparen{{A_2}{A_3}}\)\(=\overparen{{A_3}{A}}\)
Suy ra \(AA_2=A_2A_3=A_3A\) nên tam giác \({{A}{A_2}{A_3}}\) là tam giác đều
Theo cách vẽ ta có \(O\) là tâm đường tròn ngoại tiếp tam giác \({{A}{A_2}{A_3}}\)
Vậy tam giác \({{A}{A_2}{A_3}}\) thỏa mãn đề bài.
soanvan.me