Đề bài

Chứng minh rằng nếu hàm số \(f\left( z \right)\) có đạo hàm đến cấp n thì

\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( n \right)} = {a^n}f_z^{\left( n \right)}\left( {ax + b} \right).\)

Phương pháp giải - Xem chi tiết

HD: Chứng minh bằng quy nạp.

Lời giải chi tiết

Với \(n = 1\) ta có:

\(\begin{array}{l}{\left[ {f\left( {ax + b} \right)} \right]_x}'\\ = \left( {ax + b} \right)'{f_z}'\left( {ax + b} \right)\\ = a{f_z}'\left( {ax + b} \right)\end{array}\)

Nên (*) đúng.

Giả sử (*) đúng với \(n = k\), nghĩa là

\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)} = {a^k}f_z^{\left( k \right)}\left( {ax + b} \right)\)

Ta chứng minh (*) đúng với \(n = k + 1\), nghĩa là:

\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)} = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\)

Thật vậy,

\(\begin{array}{l}\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)}\\ = \left\{ {\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)}} \right\}'\\ = \left[ {{a^k}f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left[ {f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left( {ax + b} \right)'.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^k}.a.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\end{array}\)

Suy ra đpcm.

 soanvan.me