Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Hãy xác định các hệ số \(a, b\) xét xem hàm số nào nghịch biến?
LG câu a
\(y = 3 - 0,5x\);
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y = 3 - 0,5x = - 0,5x + 3\) là hàm số bậc nhất.
Hệ số \(a = - 0,5\), hệ số \(b = 3\)
Vì \( - 0,5 < 0\) nên hàm số nghịch biến.
LG câu b
\(y = - 1,5x\);
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y = - 1,5x\) là hàm số bậc nhất
Hệ số \(a = - 1,5\), hệ số \(b = 0\)
Vì \( - 1,5 < 0\) nên hàm số nghịch biến.
LG câu c
\(y = 5 - 2{x^2}\)
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y = 5 - 2{x^2}\) không phải là hàm số bậc nhất.
LG câu d
\(y = \left( {\sqrt 2 - 1} \right)x + 1\)
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y = \left( {\sqrt 2 - 1} \right)x + 1\) là hàm số bậc nhất
Hệ số \(a = \sqrt 2 - 1\), hệ số \(b = 1\)
Vì \(\sqrt 2 - 1 > 0\) nên hàm số đồng biến.
LG câu e
\(y = \sqrt 3 \left( {x - \sqrt 2 } \right)\)
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y = \sqrt 3 \left( {x - \sqrt 2 } \right) = \sqrt {3x} - \sqrt 6 \) là hàm số bậc nhất
Hệ số \(a = \sqrt 3 \), hệ số \(b = -\sqrt 6 \)
Vì \(\sqrt 3 > 0\) nên hàm số đồng biến.
LG câu f
\(y + \sqrt 2 = x - \sqrt 3 \)
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Ta có: \(y + \sqrt 2 = x - \sqrt 3\)\( \Rightarrow y = x - \sqrt 3 - \sqrt 2 \) là hàm số bậc nhất
Hệ số \(a = 1,b = - \sqrt 3 - \sqrt 2 \)
Vì \(1 > 0\) nên hàm số đồng biến.
soanvan.me