Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian \(Oxyz\) cho hai đường thẳng dvà d2 có phương trình

\({d_1}:\,\,\left\{ \begin{array}{l}
x = 1 - t\\
y = t\\
z = - t
\end{array} \right.\,\,\,\,\,\,\,\,\,\,{d_2}:\,\,\left\{ \begin{array}{l}
x = 2t'\\
y = - 1 + t'\\
z = t'
\end{array} \right.\)

LG a

Chứng minh rằng hai đường thẳng d1 và d2 chéo nhau.

Phương pháp giải:

Hai đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = {x_0} + t{a_1}\\y = {y_0} + t{a_2}\\z = {z_0} + t{a_3}\end{array} \right.\,\,\,\,\,\,\,\,\,\,{d_2}:\,\,\left\{ \begin{array}{l}x = {x_0}' + t'{a_1}'\\y = {y_0}' + t'{a_2}'\\z = {z_0}' + t'{a_3}'\end{array} \right.\)

chéo nhau khi và chỉ khi \(\overrightarrow a ;\overrightarrow {a'} \) không cùng phương (Với \(\overrightarrow a ;\overrightarrow {a'} \) lần lượt là VTCP của \(d_1;d_2\)) và hệ phương trình \(\left\{ \begin{array}{l}{x_0} + t{a_1} = {x_0}' + t'{a_1}'\\{y_0} + t{a_2} = {y_0}' + t'{a_2}'\\{z_0} + t{a_3} = {z_0}' + t'{a_3}'\end{array} \right.\) vô nghiệm.

Lời giải chi tiết:

(d1) đi qua điểm \(M(1; 0; 0)\) và có VTCP \(\overrightarrow {a_1}  = (-1; 1; -1)\)

(d2) đi qua điểm \(M'(0; -1; 0)\) và có VTCP \(\overrightarrow {a_2}  = (2; 1; 1)\)

Dễ thấy \(\overrightarrow {a_1} \) và \(\overrightarrow {a_2} \) không cùng phương nên d1 và dcó thể chéo nhau hoặc cắt nhau. Xét giao của d1 và d2: \(\left\{ \begin{array}{l}1 - t = 2t'\\t = - 1 + t'\\- t = t'\end{array} \right.\).

Hệ phương trình trên vô nghiệm, do đó d1 và d2 không cắt nhau.

Vậy d1 và d2 chéo nhau.

LG b

Viết phương trình mặt phẳng \((α)\) chứa d1 và song song với d2.

Phương pháp giải:

Mặt phẳng \((α)\) chứa (d1) và song song với d2 thì \((α)\) qua điểm bất kì thuộc \(d_1\) và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{a_1}} ;\overrightarrow {{a_2}} } \right]\), với \({\overrightarrow {{a_1}} ;\overrightarrow {{a_2}} }\) lần lượt là VTCP của \(d_1;d_2\)

Lời giải chi tiết:

Mặt phẳng \((α)\) chứa (d1) và song song với d2 thì \((α)\) qua điểm \(M_1(1; 0; 0)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right]= (2; -1; -3)\)

Phương trình mặt phẳng \((α)\) có dạng:

\(2(x - 1) - (y - 0) - 3(z - 0) = 0 \Leftrightarrow 2x - y - 3z - 2 = 0\)

soanvan.me