Đề bài

Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. 

Phương pháp giải - Xem chi tiết

+ Dựa vào tính chất tam giác cân và tính chất hai đường thẳng song song để chỉ ra các cung có số đo bằng nhau.

+ Sử dụng : “ Hai cung bằng nhau nếu chúng có số đo bằng nhau”

Lời giải chi tiết

 

a) Trường hợp tâm đường tròn nằm ngoài hai dây song song 

Giả sử \(AB//CD.\)

Kẻ đường kính \(EG//CD\)  và nối các điểm \(A,B,C,D\) với tâm \(O.\) Khi đó, ta có \(\Delta OAB\) cân vì \(OA = OB\) 

Suy ra \(\widehat A = \widehat B.\) (1)

Mặt khác, \(\widehat A = \widehat {AOE}\) và \(\widehat B = \widehat {BOG},\) (2) vì \(AB//EG\) (cùng song song với \(CD)\)

Từ (1) và (2) \( \Rightarrow \widehat {AOE} = \widehat {BOG}.\)

Do đó, ta có :

sđ\(\overparen{AE}\) =sđ \(\overparen{BG}\)      (3)

Chứng minh tương tự, ta có \(sđ\overparen{CE}=sđ\overparen{DG}\)      (4)

Vì \(C\) nằm trên cung \(AE,\) \(D\) nằm trên cung \(BG\) nên ta có :

sđ\(\overparen{AC}\) = sđ\(\overparen{AE}\) - sđ\(\overparen{CE}\)

và sđ\(\overparen{BD}\) = sđ\(\overparen{BG}\) - sđ\(\overparen{DG}\)

Vậy từ (3) và (4) ta có  :

sđ\(\overparen{AC}\) = sđ\(\overparen{BD}\)\( \Rightarrow \) \(\overparen{AC}\) = \(\overparen{BD}\) (đpcm)

b) Trường hợp tâm đường tròn nằm trong hai dây song song 

Kẻ đường kính \(EG//CD\) và nối các điểm \(A,B,C,D\) với tâm \(O.\)

Chứng minh tương tự câu a) , ta có :

sđ\(\overparen{AE}\) = sđ \(\overparen{BG}\) và sđ\(\overparen{EC}\) =sđ \(\overparen{GD}\) (5)

Vì \(E\) nằm trên cung \(AC,\) \(G\) nằm trên cung \(BD\) và từ \(\left( 4 \right)\) nên ta có :

sđ\(\overparen{AC}\) = sđ\(\overparen{AE}\) + sđ\(\overparen{EC}\)

và sđ\(\overparen{BD}\) = sđ\(\overparen{BG}\) + sđ\(\overparen{GD}\) 

\( \Rightarrow \) sđ\(\overparen{AC}\) = sđ \(\overparen{BD}\) hay \(\overparen{AC}\) = \(\overparen{BD}\) (đpcm) 

soanvan.me