Đề bài

Biết rằng hệ số của \({x^{n - 2}}\) trong khai triển \({\left( {x - {1 \over 4}} \right)^n}\) bằng \(31\). Tìm \(n\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức khai triển nhị thức Newton \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)

Lời giải chi tiết

Ta có:

\({\left( {x - {1 \over 4}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{x^{n - k}}{{\left( { - {1 \over 4}} \right)}^k}} \)

Hệ số của \(x^{n-2}\) (ứng với k=2) là \(C_n^2{\left( { - {1 \over 4}} \right)^2}\)

Theo bài ra: \(C_n^2{\left( { - {1 \over 4}} \right)^2} = 31 \)

\(\begin{array}{l}
\Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2}.\frac{1}{{16}} = 31\\
\Leftrightarrow \frac{{{n^2} - n}}{{32}} = 31\\
\Leftrightarrow {n^2} - n = 992\\
\Leftrightarrow {n^2} - n - 992 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
n = 32\left( {TM} \right)\\
n = - 31\left( {loai} \right)
\end{array} \right.
\end{array}\)

Vậy n=32.

soanvan.me