Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau

 

LG a

\(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}}\)        

 

Lời giải chi tiết:

Với mọi \(x \ne 3,\)

\(\left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} = {{3 - x} \over {3x}}.{1 \over {{{\left( {x - 3} \right)}^3}}} = \left( { - {1 \over {3x}}} \right).{1 \over {{{\left( {x - 3} \right)}^2}}}.\)

Vì  \(\mathop {\lim }\limits_{x \to 3} \left( { - {1 \over {3x}}} \right) =  - {1 \over 9} < 0\) và \(\mathop {\lim }\limits_{x \to 3} {1 \over {{{\left( {x - 3} \right)}^2}}} =  + \infty \) nên

                                                \(\mathop {\lim }\limits_{x \to 3} \left( {{1 \over x} - {1 \over 3}} \right){1 \over {{{\left( {x - 3} \right)}^3}}} =  - \infty ;\)

 

LG b

 \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}}\)

 

Lời giải chi tiết:

\({{4{x^4} - 3} \over {2{x^2} + 3x - 2}} = {{4{x^4} - 3} \over {2x - 1}}.{1 \over {x + 2}}\)

Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2x - 1}} = {{ - 61} \over 5} < 0\) và \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {1 \over {x + 2}} =  + \infty \) nên

                    \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} =  - \infty .\)

Cách giải khác

Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {4{x^4} - 3} \right) = 61 > 0,\)

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \left( {2{x^2} + 3x - 2} \right) = 0\) và \(2{x^2} + 3x - 2 < 0\)

Với \( - 2 < x < {1 \over 2}\)  nên

                  \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{4{x^4} - 3} \over {2{x^2} + 3x - 2}} =  - \infty .\)

soanvan.me