Xét tính chẵn – lẻ của mỗi hàm số sau :
a. \(y = \cos \left( {x - {\pi \over 4}} \right)\)
b. \(y = \tan \left| x \right|\)
c. \(y = \tan x - \sin 2x.\)
LG a
\(y = \cos \left( {x - {\pi \over 4}} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{
& f\left( x \right) = \cos \left( {x - {\pi \over 4}} \right)\cr&f\left( {{\pi \over 4}} \right) = 1,f\left( { - {\pi \over 4}} \right) = 0 \cr
& f\left( { - {\pi \over 4}} \right) \ne f\left( {{\pi \over 4}} \right)\cr& \text{và }f\left( { - {\pi \over 4}} \right) \ne - f\left( {{\pi \over 4}} \right) \cr} \)
Nên \(y = \cos \left( {x - {\pi \over 4}} \right)\) không phải là hàm số chẵn cũng không phải là hàm số lẻ.
LG b
\(y = \tan \left| x \right|\)
Lời giải chi tiết:
\(f(x) = \tan|x|\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in \mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan |-x| = \tan |x| = f(x)\)
Do đó \(y = \tan |x|\) là hàm số chẵn.
LG c
\(y = \tan x - \sin 2x.\)
Lời giải chi tiết:
\(f(x) = \tan x – \sin 2x\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan(-x) – \sin(-2x)\)
\(= -\tan x + \sin 2x = -(\tan x – \sin 2x)\)
\(= -f(x)\)
Do đó \(y = \tan x – \sin 2x\) là hàm số lẻ.
soanvan.me