Đề bài

Tính khoảng cách giữa hai mặt phẳng \((α)\) và \((β)\) cho bởi các phương trình sau đây: \(\left( \alpha  \right):{\rm{ }}x--2 = 0;{\rm{ }}\left( \beta  \right):x--8 = 0\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Chứng minh hai mặt phẳng song song.

- Tính khoảng cách giữa hai mặt phẳng \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \beta  \right)} \right) \) ở đó tọa điểm \(M\) chọn trước thuộc \((\alpha )\).

- Công thức khoảng cách: \(d\left( {{M_0},\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\) 

Lời giải chi tiết

Ta thấy: \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cùng có VTPT \(\overrightarrow n  = \left( {1;0;0} \right)\).

Dễ thấy điểm \(M\left( {2;0;0} \right) \in \left( \alpha  \right)\) nhưng \(M\left( {2;0;0} \right) \notin \left( \beta  \right)\) nên \(\left( \alpha  \right)//\left( \beta  \right)\).

Từ đó \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \beta  \right)} \right) = \dfrac{{\left| {2 - 8} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 6\)

Vậy khoảng cách giữa hai mặt phẳng bằng \(6\).

soanvan.me