Đề bài

Ta có: \(\left( {x\cos x} \right)' = \cos x-x\sin x \) hay \( - x\sin x{\rm{ }} = \left( {x\cos x} \right)'-\cos x.\)

Hãy tính: \(\smallint \left( {x\cos x} \right)'dx\) và \(\smallint \cos xdx\)

Từ đó tính \(\smallint x\sin xdx.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Tính các nguyên hàm, sử dụng công thức: \(\int {f'\left( x \right)dx}  = f\left( x \right) + C\) và các tính chất của nguyên hàm.

Lời giải chi tiết

Ta có: \(\int {\left( {x\cos x} \right)'dx}  = x\cos x + {C_1}\) và \(\int {\cos xdx}  = \sin x + {C_2}\)

Do đó \(\int {x\sin xdx}  =  - \int { (- x\sin x)dx} \) \( =  - \int {\left[ {\left( {x\cos x} \right)' - \cos x} \right]dx} \) \( =  - \int {\left( {x\cos x} \right)'dx}  + \int {\cos xdx} \) \( =  - x\cos x - {C_1} + \sin x + {C_2}\) \( =  - x\cos x + \sin x + C\).

soanvan.me