Đề bài

Nêu định nghĩa và các phương pháp tính nguyên hàm.

Lời giải chi tiết

Nguyên hàm

Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K.

Phương pháp tính nguyên hàm

a) Phương pháp đổi biến số

Định lý 1: Nếu \(\int {f\left( u \right)du}  = F\left( u \right) + C\) và \(u = u\left( x \right)\) là hàm số có đạo hàm liên tục thì \(\int {f\left( {u\left( x \right)} \right)u'\left( x \right)dx}  = F\left( {u\left( x \right)} \right) + C\)

Hệ quả: \(\int {f\left( {ax + b} \right)dx}  = \frac{1}{a}F\left( {ax + b} \right) + C\left( {a \ne 0} \right)\)

b. Phương pháp tính nguyên hàm từng phần

Định lý 2: Nếu hai hàm số \(u = u\left( x \right)\) và \(y = v\left( x \right)\) có đạo hàm liên tục trên \(K\) thì \(\int {u\left( x \right)v'\left( x \right)dx}  = u\left( x \right)v\left( x \right) - \int {u'\left( x \right)v\left( x \right)dx} \).

Chú ý: Viết gọn \(\int {udv}  = uv - \int {vdu} \)

soanvan.me