Lựa chọn câu để xem lời giải nhanh hơn

HĐ 4

Gọi A và A' lần lượt là hai điểm biểu diễn hai số 4,5 và -4,5 trên trục số. So sánh OA và OA'.

Phương pháp giải:

Quan sát hình vẽ để tính OA và OA’ sau đó so sánh.

Lời giải chi tiết:

Ta có: OA = 4,5 và OA’=4,5 nên OA=OA’.

Thực hành 4

Tìm số đối của các số thực sau: \(5,12;{\rm{ }}\pi ;{\rm{ }} - \sqrt {13} .\)

Phương pháp giải:

Số đối của số thực x kí hiệu là –x

Lời giải chi tiết:

Số đối của số: 5,12 là -5,12

Số đối của số: \(\pi \) là \( - \pi \)

Số đối của số: \( - \sqrt {13} \) là \(\sqrt {13} \).

Chú ý:

Muốn tìm số đối của một số ta chỉ cần đổi dấu của nó.

Vận dụng 3

So sánh các số đối của hai số \(\sqrt 2 \) và \(\sqrt 3 \).

Phương pháp giải:

-          Tìm số đối của hai số trên,

-          So sánh hai số đối vừa tìm được.

Lời giải chi tiết:

Số đối của hai số \(\sqrt 2 \) và \(\sqrt 3 \) lần lượt là \( - \sqrt 2 \) và \( - \sqrt 3 \)

Do \(2 < 3 \Rightarrow \sqrt 2  < \sqrt 3  \Rightarrow  - \sqrt 2  >  - \sqrt 3 \).

Chú ý: Với hai số thực a,b dương. Nếu a > b thì \(\sqrt a  > \sqrt b \).