1. Định nghĩa

Hàm số mũ là hàm số có dạng \(y = {a^x}\), hàm số lôgarit là hàm số có dạng  \(y = {\log _a}x\) ( với cơ số a dương khác 1).

2. Tính chất của hàm số mũ \(y = {a^x}\) \(( a > 0, a\ne 1)\).

- Tập xác định: \(\mathbb{R}\).

- Đạo hàm: \(∀x ∈\mathbb{R},y'= a^x \ln a\).

- Chiều biến thiên          

+) Nếu \(a> 1\) thì hàm số luôn đồng biến

+) Nếu \(0< a < 1\) thì hàm số luôn nghịch biến

- Tiệm cận: trục \(Ox\) là tiệm cận ngang.

- Đồ thị nằm hoàn toàn về phía trên trục hoành  \((y = {a^x} >0 \, \forall x)\), và luôn cắt trục tung tại điểm \(( 0;1)\) và đi qua điểm \((1;a)\).

3. Tính chất của hàm số lôgarit \(y = {\log _a}x\) \((a> 0, a\ne1)\).

- Tập xác định: \((0; +∞)\).

- Đạo hàm \(∀x ∈ (0; +∞),y'= \dfrac{1}{x\ln a}\).

- Chiều biến thiên:  

+) Nếu \(a> 1\) thì hàm số luôn đồng biến

+) Nếu \(0< a < 1\) thì hàm số luôn nghịch biến

- Tiệm cận: Trục \(Oy\) là tiệm cận đứng.

- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm \((1;0)\) và đi qua điểm \((a;1)\).

4. Chú ý 

- Nếu \(a > 1\) thì \(\ln a > 0\), suy ra \((a^x)'>0 \, \, \forall x\) và \({({\log_a}^x)}\; > 0,\;\;\forall x{\rm{ }} > 0;\) 

do đó hàm số mũ và hàm số lôgarit với cơ số lớn hơn 1 đều là những hàm số luôn luôn đồng biến.

Tương tự, nếu \(0 < a< 1\) thì \(\ln a < 0\), \(({a^x})' < 0\) và \({({\log_a}^x)}\; < 0,\;\;\forall x{\rm{ }} > 0;\) ; hàm số mũ và hàm số lôgarit với cơ số nhỏ hơn 1 đều là những hàm số luôn luôn nghịch biến.

- Công thức đạo hàm của hàm số lôgarit có thể mở rộng thành

\( (\ln  |x|)'= \dfrac{1}{x}, ∀x \ne 0\) và \((\log _a|x|)' = \frac{1}{{x\ln a}},{\rm{ }}\forall x \ne 0.\)

 

soanvan.me