Đề bài

Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ)

\(\left\{ \matrix{4x - 5y = 3 \hfill \cr 3x - y = 16 \hfill \cr}  \right.\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Rút \(y\) từ phương trình dưới \(3x-y=16\) rồi thay vào phương trình còn lại.

Từ đó giải hệ phương trình thu được để tìm \((x;y)\). 

Lời giải chi tiết

Ta có 

\(\left\{ \begin{array}{l}4x - 5y = 3\\3x - y = 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x - 5y = 3\\y = 3x - 16\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}y = 3x - 16\\4x - 5\left( {3x - 16} \right) = 3\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}y = 3x - 16\\4x - 15x + 80 = 3\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = 3x - 16\\ - 11x =  - 77\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = 3.7 - 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = 5\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \((x;y)=(7;5)\)

soanvan.me