Cho hình sau. Tính số đo x:
-
A
\({90^0}\)
-
B
\({100^0}\)
-
C
\({120^0}\)
-
D
\({130^0}\)
Đáp án của giáo viên lời giải hay : D
Góc ngoài tam giác bằng tổng 2 góc trong không kề với nó.
Ta có góc cần tính là góc ngoài tại đỉnh C của tam giác ABC nên:
\(x = \widehat A + \widehat B = 90^\circ + 40^\circ = 130^\circ \)
Khẳng định nào sau đây là sai?
-
A
Tam giác tù là tam giác có 1 góc tù
-
B
Tam giác nhọn là tam giác có 3 góc đều là góc nhọn
-
C
Góc lớn nhất trong 1 tam giác là góc tù
-
D
2 góc nhọn trong tam giác vuông phụ nhau.
Đáp án của giáo viên lời giải hay : C
Lý thuyết về 3 loại tam giác: Tam giác tù, tam giác vuông, tam giác nhọn
Các khẳng định A,B,D đúng.
Khẳng định C sai vì: Góc lớn nhất trong tam giác nhọn là một góc nhọn, góc lớn nhất trong tam giác vuông là góc vuông.
Tam giác ABC có \(\widehat B + \widehat C = \widehat A\) và \(\widehat C = 2\widehat B\). Tia phân giác của góc C cắt AB ở D. Tính \(\widehat {ADC}\)
-
A
60\(^\circ \)
-
B
90\(^\circ \)
-
C
120\(^\circ \)
-
D
30\(^\circ \)
Đáp án của giáo viên lời giải hay : A
Sử dụng tính chất tổng các góc của một tam giác, tính chất tia phân giác của một góc
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = {180^0}\) mà \(\widehat B + \widehat C = \widehat A\), do đó \(2\widehat A = {180^0} \Rightarrow \widehat A = {90^0}\).
Trong tam giác ABC do \(\widehat A = {90^0}\) nên \(\widehat B + \widehat C = {90^ \circ }\). Mà \(\widehat C = 2\widehat B\) do đó \(3\widehat B = {90^0} \Rightarrow \widehat B = {30^0}\)nên \(\widehat C = {60^0}\)
Do CD là tia phân giác của góc ACD nên \(\widehat {ACD} = \widehat {DCB} = \widehat C:2 = {60^ \circ }:2 = {30^ \circ }\)
Xét tam giác ADC có: \(\widehat A + \widehat {ADC} + \widehat {ACD} = {180^0} \Rightarrow \widehat {ADC} = {180^0} - \left( {\widehat A + \widehat {ACD}} \right) = {180^0} - \left( {{{30}^0} + {{90}^ \circ }} \right) = {60^ \circ }\)
Cho hai đoạn thẳng AB và CD cắt nhau ở E. Các tia phân giác của các góc ACE và DBE cắt nhau ở K. Tính số đo góc BKC?
-
A
90\(^\circ \)
-
B
\(\widehat {BDC} - \widehat {BAC}\)
-
C
\(\frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
-
D
\(\widehat {BDC} + \widehat {BAC}\)
Đáp án của giáo viên lời giải hay : C
Áp dụng tính chất tổng ba góc của một tam giác
Gọi G là giao điểm của CK và AE, H là giao điểm của BK và DE.
Xét tam giác KGB và tam giác AGC và theo tính chất góc ngoài của tam giác ta có:\(\left\{ \begin{array}{l}\widehat K + \widehat {{B_1}} = \widehat {AGK}\\\widehat A + \widehat {{C_1}} = \widehat {AGK}\end{array} \right. \Rightarrow \widehat K + \widehat {{B_1}} = \widehat A + \widehat {{C_1}}\) (1)
Xét tam giác KHC và tam giác DHB và theo tính chất góc ngoài của tam giác ta có:\(\left\{ \begin{array}{l}\widehat K + \widehat {{C_2}} = \widehat {EHB}\\\widehat D + \widehat {{B_2}} = \widehat {EHB}\end{array} \right. \Rightarrow \widehat K + \widehat {{C_2}} = \widehat D + \widehat {{B_2}}\) (2)
Do \(\widehat {{B_1}} = \widehat {{B_2}}\) (BK là tia phân giác của góc DBA);
\(\widehat {{C_1}} = \widehat {{C_2}}\) ( CK là tia phân giác của góc ACD).
Nên cộng (1) với (2) ta được \(2\widehat K = \widehat A + \widehat D\), do đó \(\widehat K = \frac{{\widehat A + \widehat D}}{2}\) hay \(\widehat {BKC} = \frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
Cho hình vẽ sau. Tính số đo góc x:
-
A
\({40^0}\)
-
B
\({50^0}\)
-
C
\({60^0}\)
-
D
\({70^0}\)
Đáp án của giáo viên lời giải hay : C
Áp dụng tính chất tổng ba góc của một tam giác
Áp dụng tính chất tổng ba góc trong tam giác ACF có :\(\widehat A + \widehat {ACF} + \widehat {AFC} = {180^0} \Leftrightarrow {60^0} + \widehat {ACF} + {90^0} = {180^0}\)
\( \Rightarrow \widehat {ACF} = {180^0} - {60^0} - {90^0} = {30^0}.\)
Áp dụng tính chất tổng ba góc trong \(\Delta IEC\) ta có: \(\widehat {IEC} + \widehat {ECI} + \widehat {EIC} = {180^0} \Leftrightarrow {30^0} + x + {90^0} = {180^0}\)
\( \Rightarrow x = {180^0} - {30^0} - {90^0} = {60^0}.\)
Tam giác ABC có \(\widehat A = {80^0},\widehat B - \widehat C = {50^0}\). Số đo góc B và góc C lần lượt là:
-
A
\(\widehat B = {65^0},\widehat C = {15^0}\)
-
B
\(\widehat B = {75^0},\widehat C = {25^0}\)
-
C
\(\widehat B = {70^0},\widehat C = {20^0}\)
-
D
\(\widehat B = {80^0},\widehat C = {30^0}\)
Đáp án của giáo viên lời giải hay : B
+ Áp dụng tính chất tổng ba góc của một tam giác, tính tổng 2 góc B và C
+ Bài toán trở về tìm 2 số biết tổng và hiệu của chúng
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat B + \widehat C = 180^\circ - 80^\circ = 100^\circ \)
Ta có:
\(\begin{array}{l}\widehat C = (100^\circ - 50^\circ ):2 = 25^\circ ;\\\widehat B = \widehat C + 50^\circ = 25^\circ + 50^\circ = 75^\circ \end{array}\)
Cho tam giác ABC có \(\widehat A = {50^0},\widehat B = {70^0}\). Tia phân giác của góc C cắt cạnh AB tại M. Số đo góc BMC là:
-
A
\({50^0}\)
-
B
\(80^\circ \)
-
C
\({100^0}\)
-
D
\({90^0}\)
Đáp án của giáo viên lời giải hay : B
Áp dụng tính chất tổng ba góc của một tam giác, tính chất tia phân giác của một góc.
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = {180^0} \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} \right) = {180^0} - \left( {{{50}^0} + {{70}^0}} \right) = {60^0}\).
Do CM là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \frac{{\widehat C}}{2} = \frac{{{{60}^0}}}{2} = {30^0}\).
Áp dụng định lí tổng ba góc trong tam giác BMC có:
\(\widehat B + \widehat {BMC} + {\widehat C_1} = {180^0} \Rightarrow \widehat {BMC} = {180^0} - \left( {\widehat B + \widehat {{C_1}}} \right) = {180^0} - \left( {{{70}^0} + {{30}^0}} \right) = {80^0}\)
Cho hình sau. Tính số đo x:
-
A
\({40^0}\)
-
B
\({50^0}\)
-
C
\({60^0}\)
-
D
\({100^0}\)
Đáp án của giáo viên lời giải hay : B
Áp dụng tính chất tổng ba góc của một tam giác: \(Trong\,\,\Delta ABC:\,\,\,\,\widehat A + \widehat B + \widehat C = {180^0}.\)
Áp dụng tính chất tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = {180^0} \Rightarrow \widehat B + \widehat C = {180^0} - \widehat A = {180^0} - {80^0} = {100^0}\).
Hay \(x + x = {100^0} \Rightarrow 2x = {100^0} \Rightarrow x = {50^0}\)
Cho tam giác ABC có \(\widehat A = 86^\circ ;\widehat B = 62^\circ \). Số đo góc C là:
-
A
\({32^0}\)
-
B
\({35^0}\)
-
C
\(24^\circ \)
-
D
\({90^0}\)
Đáp án của giáo viên lời giải hay : A
Tổng số đo 3 góc trong 1 tam giác bằng 180 độ
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 86^\circ + 62^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ - 86^\circ - 62^\circ = 32^\circ \end{array}\)
Cho tam giác ABC bất kì và điểm D nằm trên cạnh BC.
Khẳng định sai là:
-
A
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
-
B
\(\widehat {CAD} + \widehat {BAD} + \widehat {BAC} = 180^\circ \)
-
C
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
-
D
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Đáp án của giáo viên lời giải hay : B
Tổng số đo 3 góc trong 1 tam giác bằng 180 độ
Áp dụng định lí tổng số đo 3 góc trong 3 tam giác ABD, ACD và ABC, ta được:
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Vậy A,C,D đúng