Câu hỏi 1 :

Bậc của đơn thức: (-2x2).5x3 là:

  • A

    -10

  • B

    10

  • C

    5

  • D

    -5

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

+ Thực hiện phép nhân 2 đơn thức

+ Bậc của đơn thức là số mũ của lũy thừa của biến.

Lời giải chi tiết :

Ta có: (-2x2).5x3 = (-2). 5 . (x2 . x3) = -10 . x5

Bậc của đơn thức này là 5

Câu hỏi 2 :

Đa thức nào dưới đây là đa thức một biến?

  • A

    \({x^2} + y + 1\)

  • B

    \({x^3} - 2{x^2} + 3\)

  • C

    \(xy + {x^2} - 3\)

  • D

    \(xyz - yz + 3\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Sử dụng định nghĩa đa thức một biến: Đa thức một biến là tổng của những đơn thức của cùng một biến.

Lời giải chi tiết :

Đa thức \({x^3} - 2{x^2} + 3\) là đa thức một biến

Câu hỏi 3 :

Với \(a,b,c\) là các hằng số, hệ số tự do của đa thức \({x^2} + \left( {a + b} \right)x - 5a + 3b + 2\) là:

  • A

    \(5a + 3b + 2\)

  • B

    \( - 5a + 3b + 2\)

  • C

    \(2\)

  • D

    \(3b + 2\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Áp dụng định nghĩa hệ số tự do của đa thức: “Hệ số của lũy thừa 0 của biến gọi là hệ số tự do”

Lời giải chi tiết :

Hệ số tự do của đa thức \({x^2} + \left( {a + b} \right)x - 5a + 3b + 2\) là \( - 5a + 3b + 2.\)

Câu hỏi 4 :

Hệ số cao nhất của đa thức \(5{x^6} + 6{x^5} + {x^4} - 3{x^2} + 7\) là:

  • A

    \(6\)

  • B

    \(7\)

  • C

    \(4\)

  • D

    \(5\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Áp dụng định nghĩa hệ số cao nhất của đa thức: “hệ số của lũy thừa cao nhất của biến gọi là hệ số cao nhất.”

Lời giải chi tiết :

Hệ số cao nhất của đa thức \(5{x^6} + 6{x^5} + {x^4} - 3{x^2} + 7\) là \(5.\)

Câu hỏi 5 :

Bậc của đa thức \(8{x^8} - {x^2} + {x^9} + {x^5} - 12{x^3} + 10\) là

  • A

    \(10\)

  • B

    \(8\)

  • C

    \(9\)

  • D

    \(7\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Viết đa thức dưới dạng thu gọn. Trong dạng thu gọn, bậc của đa thức một biến là số mũ lớn nhất của biến trong đa thức đó

Lời giải chi tiết :

Ta có số mũ cao nhất của biến trong đa thức \(8{x^8} - {x^2} + {x^9} + {x^5} - 12{x^3} + 10\) là \(9\) nên bậc của đa thức \(8{x^8} - {x^2} + {x^9} + {x^5} - 12{x^3} + 10\) là \(9.\)

Câu hỏi 6 :

Sắp xếp đa thức \(6{x^3} + 5{x^4} - 8{x^6} - 3{x^2} + 4\) theo lũy thừa giảm dần của biến ta được:

  • A

    \( - 8{x^6} + 5{x^4} + 6{x^3} - 3{x^2} + 4\)

  • B

    \( - 8{x^6} - 5{x^4} + 6{x^3} - 3{x^2} + 4\)

  • C

    \(8{x^6} + 5{x^4} + 6{x^3} - 3{x^2} + 4\)

  • D

    \(8{x^6} + 5{x^4} + 6{x^3} + 3{x^2} + 4\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Sắp xếp các hạng tử theo số mũ của biến giảm dần từ cao xuống thấp

Lời giải chi tiết :

Ta có: \(6{x^3} + 5{x^4} - 8{x^6} - 3{x^2} + 4 =  - 8{x^6} + 5{x^4} + 6{x^3} - 3{x^2} + 4\)

Câu hỏi 7 :

Cho đa thức \(A = {x^4} - 4{x^3} + x - 3{x^2} + 1.\) Tính giá trị của \(A\) tại \(x =  - 2.\)

  • A

    \(A =  - 35\)

  • B

    \(A = 53\)

  • C

    \(A = 33\)

  • D

    \(A = 35\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Thay x = - 2 vào đa thức rồi tính giá trị đa thức

Lời giải chi tiết :

Thay \(x =  - 2\) vào biểu thức \(A\), ta có

\(A = {\left( { - 2} \right)^4} - 4.{\left( { - 2} \right)^3} + \left( { - 2} \right) - 3.{\left( { - 2} \right)^2} + 1\)

\( = 16 + 32 - 2 - 12 + 1 = 35\)

Vậy với \(x =  - 2\) thì \(A = 35.\)

Câu hỏi 8 :

Cho đa thức \(A = {x^4} - 4{x^3} + x - 3{x^2} + 1.\) Tính giá trị của \(A\) tại \(x =  - 2.\)

  • A

    \(A =  - 35\)

  • B

    \(A = 53\)

  • C

    \(A = 33\)

  • D

    \(A = 35\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Thay x = - 2 vào đa thức rồi tính giá trị đa thức

Lời giải chi tiết :

Thay \(x =  - 2\) vào biểu thức \(A\), ta có

\(A = {\left( { - 2} \right)^4} - 4.{\left( { - 2} \right)^3} + \left( { - 2} \right) - 3.{\left( { - 2} \right)^2} + 1\)

\( = 16 + 32 - 2 - 12 + 1 = 35\)

Vậy với \(x =  - 2\) thì \(A = 35.\)

Câu hỏi 9 :

Cho hai đa thức \(f\left( x \right) = {x^5} + 2;\) \(g\left( x \right) = 5{x^3} - 4x + 2.\) Chọn câu đúng về \(f\left( { - 2} \right)\) và \(g\left( { - 2} \right).\)

  • A

    \(f\left( { - 2} \right) = g\left( { - 2} \right)\)

  • B

    \(f\left( { - 2} \right) = 3.g\left( { - 2} \right)\)

  • C

    \(f\left( { - 2} \right) > g\left( { - 2} \right)\)

  • D

    \(f\left( { - 2} \right) < g\left( { - 2} \right)\)

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Thay giá trị của biến \(x =  - 2\) vào mỗi biểu thức và thực hiện phép tính để tính \(f\left( { - 2} \right)\) và \(g\left( { - 2} \right).\) So sánh \(f\left( { - 2} \right)\) và \(g\left( { - 2} \right).\)

Lời giải chi tiết :

Thay \(x =  - 2\) vào \(f\left( x \right) = {x^5} + 2\) ta được \(f\left( { - 2} \right) = {\left( { - 2} \right)^5} + 2 =  - 30\)

Thay \(x =  - 2\) vào \(g\left( x \right) = 5{x^3} - 4x + 2\)ta được  \(g\left( { - 2} \right) = 5.{\left( { - 2} \right)^3} - 4.\left( { - 2} \right) + 2 =  - 30\)

Suy ra \(f\left( { - 2} \right) = g\left( { - 2} \right)\,\,\left( {{\rm{do}}\, - 30 =  - 30} \right)\)

Câu hỏi 10 :

Cho \(f\left( x \right) = 1 + {x^3} + {x^5} + {x^7} + ... + {x^{101}}.\) Tính \(f\left( 1 \right);f\left( { - 1} \right).\)

  • A

    \(f\left( 1 \right) = 101;f\left( { - 1} \right) =  - 100\)

  • B

    \(f\left( 1 \right) = 51;f\left( { - 1} \right) =  - 49\)

  • C

    \(f\left( 1 \right) = 50;f\left( { - 1} \right) =  - 50\)

  • D

    \(f\left( 1 \right) = 101;f\left( { - 1} \right) = 100\)

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Ta thay \(x = 1;x =  - 1\) vào \(f\left( x \right)\) để tính \(f\left( 1 \right);f\left( { - 1} \right)\)

Lời giải chi tiết :

Thay \(x = 1\) vào \(f\left( x \right)\) ta được \(f\left( 1 \right) = 1 + {1^3} + {1^5} + {1^7} + ... + {1^{101}}\) \( = \underbrace {1 + 1 + 1 + ... + 1}_{51\,số\,1} = 51.1 = 51\)

Thay \(x =  - 1\) vào \(f\left( x \right)\) ta được \(f\left( { - 1} \right) = 1 + {\left( { - 1} \right)^3} + {\left( { - 1} \right)^5} + ... + {\left( { - 1} \right)^{101}}\)

\( = 1 + \underbrace {\left( { - 1} \right) + \left( { - 1} \right) + ... + \left( { - 1} \right)}_{5\,0\,số\,\,\left( { - 1} \right)}\) \( = 1 + 50.\left( { - 1} \right) = 1 - 50 =  - 49\)

Vậy \(f\left( 1 \right) = 51;f\left( { - 1} \right) =  - 49\)

Câu hỏi 11 :

Tìm đa thức \(f\left( x \right) = ax + b.\) Biết \(f\left( 0 \right) = 7;f\left( 2 \right) = 13.\)

  • A

    \(f\left( x \right) = 7x + 3\)

  • B

    \(f\left( x \right) = 3x - 7\)

  • C

    \(f\left( x \right) = 3x + 7\)

  • D

    \(f\left( x \right) = 7x - 3\)

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Thay \(x = 0\) vào \(f\left( x \right)\) và sử dụng \(f\left( 0 \right) = 7\) để tìm \(b.\) Thay \(x = 2\) vào \(f\left( x \right)\) và sử dụng \(f\left( 2 \right) = 7\) để tìm \(a.\)

Lời giải chi tiết :

Thay \(x = 0\) vào \(f\left( x \right)\) ta được \(f\left( 0 \right) = a.0 + b = 7 \Rightarrow b = 7\)

Ta được \(f\left( x \right) = ax + 7\)

Thay \(x = 2\) vào \(f\left( x \right) = ax + 7\) ta được \(f\left( 2 \right) = a.2 + 7 = 13 \Rightarrow 2a = 6 \Rightarrow a = 3\)

Vậy \(f\left( x \right) = 3x + 7.\)

Câu hỏi 12 :

Cho đa thức sau : \(f(x) = 3{x^2} + \,15x + 12\). Trong các số sau, số nào là nghiệm của đa thức đã cho:   

  • A

    –9                 

  • B

    1

  • C

    -1

  • D

    -2

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Thay lần lượt các giá trị x = - 9 ; x = 1 ; x = -1 và x = -4 vào f(x). Tại giá trị x nào mà làm f(x) = 0  thì giá trị x đó là nghiệm của đa thức f(x)

Lời giải chi tiết :

Ta có : f(-9) = 3. (-9)2 + 15 . (-9) + 12 = 3.81 + (-135) +12 = 120

f(1) = 3. 12 +15 . 1 + 12 = 30

f(-1) = 3. (-1)2 + 15. (-1)  +12 = 0

f(-2) = 3. (-2)2 + 15. (-2) + 12 = -6

Vì f(-1) = 0 nên x = -1 là nghiệm của đa thức f(x)

Câu hỏi 13 :

Tập nghiệm của đa thức \(f(x) = (x + 14)(x - 4)\) là:

  • A

    \({\rm{\{ 4;}}\,{\rm{14\} }}\)

  • B

    \({\rm{\{ }} - {\rm{4;}}\,{\rm{14\} }}\) 

  • C

    \({\rm{\{ }} - {\rm{4;}}\, - {\rm{14\} }}\)

  • D

    \({\rm{\{ 4;}}\, - {\rm{14\} }}\)

Đáp án của giáo viên lời giải hay : D

Phương pháp giải :

Muốn tìm nghiệm của đa thức f(x), ta giải f(x) = 0 để tìm x.

f(x) =A . B = 0 khi A = 0 hoặc B = 0

Lời giải chi tiết :

\(f(x) = 0 \Rightarrow (x + 14)(x - 4) = 0 \Rightarrow \left[ \begin{array}{l}x + 14 = 0\\x - 4 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x =  - 14\\x = 4\end{array} \right.\)

Vậy tập nghiệm của đa thức f(x) là {4;  –14}.

Câu hỏi 14 :

Cho \(P(x) =  - 3{x^2} + 27\). Hỏi đa thức P(x) có bao nhiêu nghiệm?

  • A

    1 nghiệm

  • B

    2 nghiệm 

  • C

    3 nghiệm        

  • D

    Vô nghiệm

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Muốn biết đa thức P(x) có bao nhiêu nghiệm, ta giải P(x) = 0 để tìm x.

Lời giải chi tiết :

\(P(x) = 0 \Rightarrow  - 3{x^2} + 27 = 0 \Rightarrow  - 3{x^2} =  - 27 \Rightarrow {x^2} = 9 \Rightarrow \left[ \begin{array}{l}x = 3\\x =  - 3\end{array} \right.\)

Vậy đa thức P(x) có 2 nghiệm.

Câu hỏi 15 :

Cho \(Q(x) = a{x^2} - 3x + 9\). Tìm a biết Q(x) nhận –3 là nghiệm

  • A

    a = –1

  • B

    a = –4

  • C

    a = –2

  • D

    a = 3

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Q(x) nhận –3 là nghiệm nên Q(–3) = 0, từ đó ta tìm được a.

Lời giải chi tiết :

Q(x) nhận –3 là nghiệm nên Q(–3) = 0

\(\begin{array}{l} \Rightarrow a.{( - 3)^2} - 3.( - 3) + 9 = 0 \Rightarrow 9a + 9 + 9 = 0\\ \Rightarrow 9a =  - 18\,\, \Rightarrow \,a =  - 2\end{array}\)

Vậy Q(x) nhận –3 là nghiệm thì \(a =  - 2\).

Câu hỏi 16 :

Tìm nghiệm của đa thức - x2 + 3x

  • A

    x = 3

  • B

    x = 0

  • C

    x = 0; x = 3

  • D

    x = -3; x = 0

Đáp án của giáo viên lời giải hay : C

Phương pháp giải :

Các đa thức có hệ số tự do là 0 thì có một nghiệm là x = 0.

+ Đưa đa thức đã cho về dạng x . A

+ x . A = 0 khi x = 0 hoặc A = 0

Lời giải chi tiết :

Xét - x2 + 3x = 0

\( \Leftrightarrow \) x . (-x +3) = 0

\( \Leftrightarrow \)\(\left[ {_{ - x + 3 = 0}^{x = 0}} \right. \Leftrightarrow \left[ {_{x = 3}^{x = 0}} \right.\)

Vậy x = 0; x = 3

Câu hỏi 17 :

Thu gọn đa thức M = -x2 + 5x – 4x3 + (-2x)2 ta được:

  • A

    3x2 + 5x – 4x3

  • B

    -3x2 + 5x – 4x3

  • C

    -4x3 – x2 + x

  • D

    -4x3 – 5x2 + 5x

Đáp án của giáo viên lời giải hay : A

Phương pháp giải :

Nhóm các hạng tử cùng bậc rồi thu gọn

Lời giải chi tiết :

M = -x2 + 5x – 4x3 + (-2x)2

= -x2 + 5x – 4x3 + 4x2

=( -x2 + 4x2) + 5x – 4x3

=3x2 + 5x – 4x3

Câu hỏi 18 :

Biết \((x - 1)f(x) = (x + 4)f(x + 8)\). Vậy f(x) có ít nhất bao nhiêu nghiệm.

  • A

    1

  • B

    2

  • C

    4

  • D

    f(x) có vô số nghiệm

Đáp án của giáo viên lời giải hay : B

Phương pháp giải :

Nếu f(a) = 0 thì a là nghiệm của đa thức f(x).

Lời giải chi tiết :

Vì \((x - 1)f(x) = (x + 4)f(x + 8)\)với mọi x nên suy ra:

  • Khi x – 1 = 0, hay x = 1 thì ta có:

 \((1 - 1).f(1) = (1 + 4)f(1 + 8) \Rightarrow 0.f(1) = 5.f(9)\,\,\, \Rightarrow f(9) = 0\)

Vậy x = 9 là một nghiệm của  f(x).

  • Khi x + 4 = 0, hay x = –4 thì ta có: \(( - 4 - 1).f( - 4) = ( - 4 + 4).f( - 4 + 8)\,\,\, \Rightarrow - 5.f( - 4) = 0.f(4) \Rightarrow f( - 4) = 0\)

Vậy x =  –4  là một nghiệm của  f(x).

Vậy f(x) có ít nhất 2 nghiệm là 9 và –4.