Video hướng dẫn giải
Tìm số gia của hàm số \(f(x) = x^3\), biết rằng:
LG a
\(x_0 = 1; ∆x = 1\)
Phương pháp giải:
Số gia của hàm số \(y = f\left( x \right)\) là: \(\Delta f\left( x \right) = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)
Lời giải chi tiết:
\(\begin{array}{l}\,\,\Delta f\left( x \right) = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\\Rightarrow \Delta f\left( x \right) = f\left( {1 + 1} \right) - f\left( 1 \right)\\\Rightarrow \Delta f\left( x \right) = f\left( 2 \right) - f\left( 1 \right)\\\Rightarrow \Delta f\left( x \right) = {2^3} - {1^3} = 7\\\end{array}\)
LG b
\(x_0= 1; ∆x = -0,1\)
Phương pháp giải:
Số gia của hàm số \(y = f\left( x \right)\) là: \(\Delta f\left( x \right) = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)
Lời giải chi tiết:
\(\begin{array}{l}\,\,\Delta f\left( x \right) = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\\\Rightarrow \Delta f\left( x \right) = f\left( {1 - 0,1} \right) - f\left( 1 \right)\\\Rightarrow \Delta f\left( x \right) = f\left( {0,9} \right) - f\left( 1 \right)\\\Rightarrow \Delta f\left( x \right) = 0,{9^3} - 1 = - 0,271\end{array}\)
soanvan.me