Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính \(∆y\) và \({{\Delta y} \over {\Delta x}}\) của các hàm số sau theo \(x\) và \(∆x\) :

LG a

\(y = 2x - 5\)

Phương pháp giải:

Sử dụng công thức: \(\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\) tính \(\Delta y\), từ đó suy ra \(\dfrac{{\Delta y}}{{\Delta x}}\)

(Trong công thức \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\) ta coi \(x_0=x\))

Lời giải chi tiết:

\(\begin{array}{l}
\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\\
= \left[ {2\left( {x + \Delta x} \right) - 5} \right] - \left( {2x - 5} \right)\\
= 2x + 2\Delta x - 5 - 2x + 5\\
= 2\Delta x\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}}  = \dfrac{{2\Delta x}}{{\Delta x}}= 2
\end{array}\)

LG b

\(y = x^2- 1\)

Lời giải chi tiết:

\(\begin{array}{l}
\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\\
= {\left( {x + \Delta x} \right)^2} - 1 - \left( {{x^2} - 1} \right)\\
= {x^2} + 2x\Delta x + {\left( {\Delta x} \right)^2} - 1 - {x^2} + 1\\
= 2x\Delta x + {\left( {\Delta x} \right)^2}\\
= \Delta x\left( {2x + \Delta x} \right)\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}}  = \dfrac{{\Delta x\left( {2x + \Delta x} \right)}}{{\Delta x}}\\= 2x + \Delta x
\end{array}\)

LG c

\(y = 2x^3\)

Lời giải chi tiết:

\(\begin{array}{l}
\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\\
= 2{\left( {x + \Delta x} \right)^3} - 2{x^3}\\
= 2\left[ {{x^3} + 3{x^2}\Delta x + 3x{{\left( {\Delta x} \right)}^2} + {{\left( {\Delta x} \right)}^3}} \right] - 2{x^3}\\
= 2{x^3} + 6{x^2}\Delta x + 6x{\left( {\Delta x} \right)^2} + 2{\left( {\Delta x} \right)^3} - 2{x^3}\\
= 6{x^2}\Delta x + 6x{\left( {\Delta x} \right)^2} + 2{\left( {\Delta x} \right)^3}\\
= \Delta x\left[ {6{x^2} + 6x\Delta x + 2{{\left( {\Delta x} \right)}^2}} \right]\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}}  = \dfrac{{\Delta x\left[ {6{x^2} + 6x\Delta x + 2{{\left( {\Delta x} \right)}^2}} \right]}}{{\Delta x}}\\= 6{x^2} + 6x\Delta x + 2{\left( {\Delta x} \right)^2}
\end{array}\)

LG d

\(y = {1 \over x}\)

Lời giải chi tiết:

\(\begin{array}{l}
\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right)\\
= \dfrac{1}{{x + \Delta x}} - \dfrac{1}{x}\\
= \dfrac{{x - x - \Delta x}}{{x\left( {x + \Delta x} \right)}}\\
= \dfrac{{ - \Delta x}}{{x\left( {x + \Delta x} \right)}}\\
\Rightarrow \dfrac{{\Delta y}}{{\Delta x}}  = \dfrac{{ - \Delta x}}{{x\left( {x + \Delta x} \right)}}:\Delta x \\= \dfrac{{ - \Delta x}}{{x\left( {x + \Delta x} \right)}}.\dfrac{1}{{\Delta x}}= \dfrac{{ - 1}}{{x\left( {x + \Delta x} \right)}}
\end{array}\)

soanvan.me