Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình tiếp tuyến của đường cong \(y = x^3\):

LG a

Tại điểm có tọa độ \((-1;-1)\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2} \right)\\ = x_0^2 + {x_0}.{x_0} + x_0^2 = 3x_0^2\\
\Rightarrow y'\left( {{x_0}} \right) = 3x_0^2
\end{array}\)

Ta có: \(y' (-1) = 3\).

Vậy phương trình tiếp tuyến tại điểm \((-1;-1)\) là: \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)

LG b

Tại điểm có hoành độ bằng \(2\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

Lời giải chi tiết:

Ta có: \(y' (2) = 3.2^2=12\), \(y(2) =2^3= 8\).

Vậy phương trình tiếp tuyến tại điểm có hoành độ bằng \(2\) là: \(y = 12\left( {x - 2} \right) + 8 = 12x - 16\).

LG c

Biết hệ số góc của tiếp tuyến bằng \(3\)

Phương pháp giải:

Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x_0\) là \(f'\left( {{x_0}} \right) = 3\).

Giải phương trình tìm \(x_0\), từ đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\).

Lời giải chi tiết:

Gọi \(x_0\) là hoành độ tiếp điểm. Ta có: 

\(y' (x_0) = 3 \Leftrightarrow 3{x_0}^2= 3\Leftrightarrow {x_0}^2= 1\) \(\Leftrightarrow x_0= ±1\).

+) Với \(x_0= 1\) ta có \(y(1) = 1\), phương trình tiếp tuyến là \(y = 3\left( {x - 1} \right) + 1 = 3x - 2\)

+) Với \(x_0= -1\) ta có \(y(-1) = -1\), phương trình tiếp tuyến là \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)

 soanvan.me