Đề bài
Khai triển biểu thức:
a) \({(2x + y)^6}\)
b) \({(x - 3y)^6}\)
c) \({(x - 1)^n}\)
d) \({(x + 2)^n}\)
e) \({(x + y)^{2n}}\)
f) \({(x - y)^{2n}}\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức nhị thức Newton
\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
hoặc tam giác Pascal
Lời giải chi tiết
a) Sử dụng tam giác Pascal, ta có:
\(\begin{array}{l}{(2x + y)^6} = {\left( {2x} \right)^6} + 6{\left( {2x} \right)^5}.y + 15{\left( {2x} \right)^4}.{y^2} + 20{\left( {2x} \right)^3}.{y^3} + 15{\left( {2x} \right)^2}.{y^4} + 6\left( {2x} \right).{y^5} + {y^6}\\ = 64{x^6} + 192{x^5}y + 240{x^4}{y^2} + 160{x^3}{y^3} + 60{x^2}{y^4} + 12x{y^5} + {y^6}\end{array}\)
b) Sử dụng tam giác Pascal, ta có:
\(\begin{array}{l}{(x - 3y)^6} = {x^6} + 6{x^5}.\left( { - 2y} \right) + 15{x^4}.{\left( { - 3y} \right)^2} + 20{x^3}.{\left( { - 3y} \right)^3} + 15{x^2}.{\left( { - 3y} \right)^4} + 6x.{\left( { - 3y} \right)^5} + {\left( { - 3y} \right)^6}\\ = {x^6} - 12{x^5}y + 135{x^4}{y^2} - 540{x^3}{y^3} + 1215{x^2}{y^4} - 1458x{y^5} + 729{y^6}\end{array}\)c) Sử dụng công thức nhị thức Newton
\({(x - 1)^n} = C_n^0{x^n} + C_n^1{x^{n - 1}}{\left( { - 1} \right)^1} + ... + C_n^{n - 1}x{\left( { - 1} \right)^{n - 1}} + C_n^n{\left( { - 1} \right)^n}\)
d) Sử dụng công thức nhị thức Newton
\({(x + 2)^n} = C_n^0{x^n} + C_n^1{x^{n - 1}}{.2^1} + ... + C_n^{n - 1}x{.2^{n - 1}} + C_n^n{.2^n}\)
e) Sử dụng công thức nhị thức Newton
\({(x + y)^{2n}} = C_{2n}^0{x^{2n}} + C_{2n}^1{x^{2n - 1}}{y^1} + ... + C_{2n}^{2n - 1}x{y^{2n - 1}} + C_{2n}^{2n}{y^{2n}}\)
f) Sử dụng công thức nhị thức Newton
\({(x - y)^{2n}} = C_{2n}^0{x^{2n}} + C_{2n}^1{x^{2n - 1}}{\left( { - y} \right)^1} + ... + C_{2n}^{2n - 1}x{\left( { - y} \right)^{2n - 1}} + C_{2n}^{2n}{\left( { - y} \right)^{2n}}\)