Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(f(x) = {\sin ^2}x + cosx\)

LG a

Chứng minh rằng hàm số  đồng biến trên đoạn \(\left[ {0;{\pi  \over 3}} \right]\) và nghịch biến trên đoạn \(\left[ {{\pi  \over 3};\pi } \right]\)

Lời giải chi tiết:

Hàm số liên tục trên đoạn \(\left[ {0;\pi } \right]\)

Ta có:                     

\(f'(x) = 2\sin x\cos x - {\mathop{\rm s}\nolimits} {\rm{in}}x\)

\( = \sin x(2\cos x - 1),x \in \left( {0;\pi } \right)\)

Vì khi đó sinx > 0 nên

\(f'(x) = 0 \Leftrightarrow \cos x = {1 \over 2} \Leftrightarrow x = {\pi  \over 3}\)

Bảng biến thiên:

Hàm số đồng biến trên đoạn \(\left[ {0;{\pi  \over 3}} \right]\) và nghịch biến trên đoạn \(\left[ {{\pi  \over 3};\pi } \right]\)

LG b

Chứng minh rằng với mọi \(m \in \left( { - 1;1} \right)\), phương trình

\({\sin ^2}x + cosx = m\)

có một nghiệm duy nhất thuộc đoạn \(\left[ {0;\pi } \right]\)

Lời giải chi tiết:

+) Hàm số f liên tục trên đoạn \(\left[ {0;{\pi  \over 3}} \right]\), \(f\left( {{\pi  \over 3}} \right) = {5 \over 4}\) và \(f(\pi) = -1\).

Theo định lí về giá trị trung bình của hàm số liên tục, với  mọi \(m \in \left( { - 1;1} \right) \subset \left( { - 1;{5 \over 4}} \right)\) tồn tại một số thực \(c \in \left( {{\pi  \over 3};\pi } \right)\) sao cho f(c) = 0.

Số c là nghiệm của phương trình trong b).

Vì hàm số f  nghịch biến trên \(\left[ {{\pi  \over 3};\pi } \right]\)nên trên đoạn này, phương trình có một nghiệm duy nhất.

+) Vì với mọi \(x \in \left( {0;{\pi  \over 3}} \right)\) ta có \(1 \le f(x) \le {5 \over 4}\) nên phương trình đã nêu không có nghiệm \(m \in \left( { - 1;1} \right)\)

Vậy phương trình đã cho có một nghiệm duy nhất thuộc \(\left( {0;\pi } \right)\)

soanvan.me