Đề bài
Tìm x để mỗi căn thức sau có nghĩa:
a)\( \sqrt{2x + 7}\); c) \(\displaystyle \sqrt {{1 \over { - 1 + x}}} \)
b) \( \sqrt{-3x + 4}\) d) \( \sqrt{1 + x^{2}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) \(\sqrt A \) xác định (hay có nghĩa) khi \( A \ge 0 \).
+) Các tính chất của bất đẳng thức:
1) \(a < b \Leftrightarrow a.c < b.c\), nếu \(c > 0\).
2) \(a< b \Leftrightarrow a.c > b.c\), nếu \(c <0\).
3) \(a < b \Leftrightarrow a+c < b+c\), với mọi \( c\).
Lời giải chi tiết
a) Ta có:
\(\sqrt{2x + 7}\) có nghĩa \(\Leftrightarrow\) \(2x + 7\geq 0 \)
\( \Leftrightarrow 2x \geq -7\)
\(\displaystyle \Leftrightarrow x \geq {{ - 7} \over 2}\).
b) Ta có
\(\sqrt{-3x + 4}\) có nghĩa \(\Leftrightarrow\) \(-3x + 4\geq 0\)
\(\Leftrightarrow -3x\geq -4\)
\(\displaystyle \Leftrightarrow x\leq {-4 \over {- 3}}\)
\(\displaystyle \Leftrightarrow x\leq {4 \over { 3}}\)
c) Ta có:
\(\sqrt{\dfrac{1}{-1 + x}}\) có nghĩa
\(\Leftrightarrow\)\(\displaystyle {1 \over \displaystyle { - 1 + x}} \ge 0 \Leftrightarrow - 1 + x > 0\)
\( \Leftrightarrow x > 1\)
d) \(\sqrt{1 + x^{2}}\)
Ta có: \(x^2\geq 0\), với mọi số thực \(x\)
\(\Leftrightarrow x^2+1 \geq 1 >0\), với mọi số thực \(x\)
Vậy căn thức trên luôn có nghĩa với mọi số thực \(x\).