Đề bài

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:

a) \(y = 4{x^2} + 6x - 5\)

b) \(y =  - 3{x^2} + 10x - 4\)

Phương pháp giải - Xem chi tiết

Cho hàm số \(y = a{x^2} + bx + c\)

Bước 1: Xác định các hệ số a, b, c. Tính \(\frac{{ - b}}{{2a}}\)

Bước 2:

+ Nếu \(a > 0\)

Hàm số đồng biến trên \((\frac{{ - b}}{{2a}}; + \infty )\) và nghịch biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\)

+ Nếu \(a < 0\)

Hàm số đồng biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\) và nghịch biến trên \((\frac{{ - b}}{{2a}}; + \infty )\)

Lời giải chi tiết

a) Hàm số\(y = 4{x^2} + 6x - 5\) có \(a = 4,b = 6,c =  - 5 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.4}} =  - \frac{3}{4}\)

Vì \(a = 4 > 0\) nên hàm số đồng biến trên khoảng \(\left( { - \frac{3}{4}; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - \frac{3}{4}} \right)\)

b) Hàm số  \(y =  - 3{x^2} + 10x - 4\) có \(a =  - 3,b = 10,c =  - 4 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 10}}{{2.\left( { - 3} \right)}} = \frac{5}{3}\)

Vì \(a =  - 3 < 0\) nên hàm số đồng biến trên khoảng \(\left( { - \infty ;\frac{5}{3}} \right)\), nghịch biến trên khoảng \(\left( {\frac{5}{3}; + \infty } \right)\)