Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = 2{x^4} - 4{x^2}\)(1)

LG câu a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).

Phương pháp giải:

- Tìm TXĐ.

- Xét sự biến thiên.

- Vẽ đồ thị hàm số.

Giải chi tiết:

Tập xác định : \(D = R\)

\(y' = 8{x^3} - 8x = 8x({x^2} - 1)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 0\\x = 1\end{array} \right.\)

Hàm số đồng biến trên mỗi khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\)

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\)

Hàm số đạt cực đại tại \(x = 0;{y_{CD}} = 0\)

Hàm số đạt cực tiểu tại \(x =  \pm 1;{y_{CT}} =  - 2\)

Giới hạn: \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \)

\(y'' = 24{x^2} - 8;\)\(y'' = 0 \Leftrightarrow {x^2} = \dfrac{1}{3} \Leftrightarrow x =  \pm \dfrac{{\sqrt 3 }}{3}\)

Đồ thị có hai điểm uốn:  \({I_1}\left( { - \dfrac{{\sqrt 3 }}{3}; - \dfrac{{10}}{9}} \right);\)\({I_2}\left( {\dfrac{{\sqrt 3 }}{3}; - \dfrac{{10}}{9}} \right)\).

Bảng biến thiên:

Đồ thị:

Đồ thị cắt trục hoành tại: \(A( - \sqrt 2 ;0),O(0;0),B(\sqrt 2 ;0)\).

LG b

Với giá trị nào của \(m\), phương trình \({x^2}|{x^2} - 2| = m\) có đúng \(6\) nghiệm thực phân biệt?

(Đề thi đại học năm 2009; khối B)

Phương pháp giải:

- Biến đổi phương trình đã cho về \(\left| {2{x^4} - 4{x^2}} \right| = 2m\).

- Dựng đồ thị hàm số \(y = \left| {2{x^4} - 4{x^2}} \right|\) từ đồ thị hàm số đã vẽ ở ý a:

+ Giữ nguyên phần đồ thị phía trên trục \(Ox\).

+ Lấy đối xứng phần dưới qua \(Ox\) và xóa phần dưới đi.

- Biện luận số nghiệm dựa vào số giao điểm của đường thẳng \(y = 2m\) và đồ thị vừa vẽ được.

Giải chi tiết:

Ta có: \({x^2}|{x^2} - 2| = m\)\( \Leftrightarrow 2{x^2}\left| {{x^2} - 2} \right| = 2m\)\( \Leftrightarrow \left| {2{x^2}\left( {{x^2} - 2} \right)} \right| = 2m\)\( \Leftrightarrow \left| {2{x^4} - 4{x^2}} \right| = 2m\)

Từ đồ thị hàm số \(y = 2{x^4}-4{x^2}\) có thể suy ra đồ thị của hàm số \(y = \left| {2{x^4} - 4{x^2}} \right|\) như sau:

Phương trình : \(\left| {2{x^4} - 4{x^2}} \right| = 2m\)  có \(6\) nghiệm phân biệt khi và chỉ khi đường thẳng \(y = 2m\) giao với đồ thị trên tại \(6\) điểm phân biệt \( \Leftrightarrow 0 < 2m < 2\) \( \Leftrightarrow 0 < m < 1\).

Vậy \(0 < m < 1\).

soanvan.me