Đề bài

Cho \(a > 0, \;b > 0\), nếu \(a< b\) hãy chứng tỏ:

a) \({a^2} < ab\) và \(ab < {b^2}\)

b) \({a^2} < {b^2}\) và \({a^3} < {b^3}\)

Phương pháp giải - Xem chi tiết

- Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương : Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.

- Áp dụng tính chất bắc cầu : Nếu \(a<b\,;\;b<c\) thì \(a<c.\)

Lời giải chi tiết

a) Với \(a > 0,\, b > 0\) ta có:

Vì \(a < b \Rightarrow a.a < a.b \Rightarrow {a^2} < ab\)   \((1)\)

Vi \(a < b \Rightarrow a.b < b.b \Rightarrow ab < {b^2}\)  \((2)\)

b) Từ \((1)\) và \((2)\) suy ra: \({a^2} < {b^2}\)

Ta có: \(a < b \Rightarrow a.a^2<b.a^2\Rightarrow {a^3} < {a^2}b\)   \((3)\)

\(a < b \Rightarrow a.b^2<b.b^2\Rightarrow a{b^2} < {b^3}\)  \((4)\)

\(a < b \Rightarrow a.ab < b.ab \Rightarrow {a^2}b < a{b^2}\)    \((5)\)

Từ \((3)\), \((4)\) và \((5)\) suy ra: \({a^3} <a^2b<ab^2< {b^3}\)

Vậy \(a^3<b^3.\)

soanvan.me