Đề bài

Gieo đồng thời 3 con súc sắc. Hỏi có bao nhiêu khả năng xảy ra mà tổng số chấm trên mặt xuất hiện của 3 con súc sắc là 9 ?

Lời giải chi tiết

Ta phải tìm số các bộ \(\left( {a,b,c} \right)\) với \(1 \le a \le 6;1 \le b \le 6;1 \le c \le 6\) sao cho \(a + b + c = 9.\)

Các tập ba số \(\left\{ {a,b,c} \right\}\) với \(a + b + c = 9\) là \(\left\{ {1,2,6} \right\},\left\{ {1,3,5} \right\},\left\{ {2,3,4} \right\},\left\{ {1,4,4} \right\},\)\(\left\{ {2,2,5} \right\}\) và \(\left\{ {3,3,3} \right\}.\)

TH1: tập \(\left\{ {1;2;6} \right\}\) có \(6\) bộ là:

\(\left( {1,2,6} \right),\left( {1,6,2} \right),\left( {2,1,6} \right),\)\(\left( {2,6,1} \right),\left( {6,1,2} \right),\left( {6,2,1} \right)\)

Tương tự các bộ \(\left\{ {1;3;5} \right\},\left\{ {2;3;4} \right\}\) mỗi tập có \(6\) bộ.

TH2: tập \(\left\{ {1;4;4} \right\}\) có \(3\) bộ là:

\(\left( {1;4;4} \right),\left( {4;1;4} \right),\left( {4;4;1} \right)\).

Tương tự tập \(\left\{ {2;2;5} \right\}\) cũng có \(3\) bộ.

TH3: tập \(\left\{ {3;3;3} \right\}\) chỉ có \(1\) bộ thỏa mãn.

Theo quy tắc cộng có: \(6 + 6 + 6 + 3 + 3 + 1 = 25\).

soanvan.me