Đề bài

Chứng minh rằng: 

a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)

b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức và tính chất của tổ hợp để biến đổi vế phức tạp hơn của các đẳng thức trên

Một số công thức áp dụng: \(n(n - 1)! = n!,k(k - 1)! = k!\)

Lời giải chi tiết

a) Với \(1 \le k \le n\),  biến đổi vế phải ta có:

VP = \(nC_{n - 1}^{k - 1} = \frac{{n(n - 1)!}}{{(k - 1)!\left[ {(n - 1) - (k - 1)} \right]!}}\)\( = \frac{{n!}}{{(k - 1)!(n - k)!}} = \frac{{n!}}{{\frac{{k!}}{k}(n - k)!}}\)\( = k\frac{{n!}}{{k!(n - k)!}}\) \( = kC_n^k\) = VT (ĐPCM)

b) Với \(0 \le k \le n\),  biến đổi vế phải ta có:

VP = \(\frac{1}{{n + 1}}C_{n + 1}^{k + 1} = \frac{1}{{n + 1}}\frac{{(n + 1)!}}{{(k + 1)!\left[ {(n + 1) - (k + 1)} \right]!}}\)\( = \frac{{(n + 1).n!}}{{(n + 1)(k + 1)!(n - k)!}} = \frac{{n!}}{{(k + 1)!(n - k)!}}\)

     \( = \frac{{n!}}{{(k + 1)k!(n - k)!}} = \frac{1}{{k + 1}}\frac{{n!}}{{k!(n - k)!}}\) \( = \frac{1}{{k + 1}}C_n^k\) = VT (ĐPCM)