Cho đường thẳng \(\Delta \) và mp(P) có phương trình:
\(\Delta :{{x - 1} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 2}\,\,;\,\,\left( P \right):2x + z - 5 = 0\).
LG a
Xác định tọa độ giao điểm A của \(\Delta \) và (P).
Giải chi tiết:
Phương trình tham số của \(\Delta \) là:
\(\left\{ \matrix{
x = 1 + t \hfill \cr
y = 2 + 2t \hfill \cr
z = 3 + 2t \hfill \cr} \right.\).
Thay x, y, z vào phương trình của mp(P) ta được:
\(2\left( {1 + t} \right) + 3 + 2t - 5 = 0 \Leftrightarrow t = 0\).
Vậy giao điểm của \(\Delta \) và mp(P) là A(1; 2; 3).
LG b
Viết phương trình đường thẳng đi qua A, nằm trong (P) và vuông góc với \(\Delta \).
Giải chi tiết:
Gọi d là đường thẳng đi qua A nằm trong (P) và vuông góc với \(\Delta \). Vectơ chỉ phương \(\overrightarrow {u'} \) của d phải vuông góc với chỉ phương \(\overrightarrow u = \left( {1;2;2} \right)\) của \(\Delta \) đồng thời vuông góc với cả vectơ pháp tuyến \(\overrightarrow n = \left( {2;0;1} \right)\) của (P) nên ta chọn \(\overrightarrow {u'} = \left[ {\overrightarrow u ,\overrightarrow n } \right] = \left( {2;3; - 4} \right)\).
Vậy d có phương trình tham số là
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 2 + 3t \hfill \cr
z = 3 - 4t \hfill \cr} \right.\)
soanvan.me