Đề bài

Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA=2a. Gọi B’, D’ lần lượt là hình chiếu của A trên SB và SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.

Lời giải chi tiết

Ta có\(AB' \bot SB,AB' \bot CB(\) do \(CB \bot \left( {SAB} \right)\))

\( \Rightarrow AB' \bot \left( {SBC} \right) \Rightarrow AB' \bot SC   \;\;(1)\)

Tương tự \(AD' \bot SC\;\;\;(2)\)

Từ (1) và (2) suy ra

 \(\eqalign{  & SC \bot \left( {AB'C'D'} \right)  \cr  &  \Rightarrow SC \bot AC'. \cr} \)

Do tính đối xứng ta có

\({V_{S.AB'C'D'}} = 2{V_{S.AB'C'}}\)

Ta có

\(\eqalign{  & {{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SB'} \over {SB}}.{{SC'} \over {SC}} = {{SB'.SB} \over {S{B^2}}}.{{SC'.SC} \over {S{C^2}}}    \cr  &  = {{S{A^2}} \over {S{B^2}}}.{{S{A^2}} \over {S{C^2}}} = {{4{a^2}} \over {5{a^2}}}.{{4{a^2}} \over {6{a^2}}} = {8 \over {15}}.  \cr  & {V_{S.ABC}} = {1 \over 3}.{{{a^2}} \over 2}.2a = {{{a^3}} \over 3}\cr& \Rightarrow {V_{S.AB'C'}} = {8 \over {15}}.{{{a^3}} \over 3} = {{8{a^3}} \over {45}}  \cr  &  \Rightarrow {V_{S.AB'C'D'}} = {{16{a^3}} \over {45}}. \cr} \)

soanvan.me