Lựa chọn câu để xem lời giải nhanh hơn

Cho khối lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’.

LG a

Dựng thiết diện của khối lập phương khi cắt bởi \(mp\left( {AEF} \right).\)

Lời giải chi tiết:

Đường thẳng EF cắt A’D’ tại N, cắt A’B’ tại M, AN cắt DD’ tại P, AM cắt BB’ tại Q.

Vậy thiết diện là ngũ giác APFEQ.

LG b

Tính tỉ số thể tích hai phần của khối lập phương bị chia bởi mặt phẳng \(\left( {AEF} \right).\)

Lời giải chi tiết:

Đặt :

\(\eqalign{  & V = {V_{ABCD.A'B'C'D'}},  \cr  & {V_1} = {V_{ABCDC'QEFP}},  \cr  & {V_2} = {V_{AQEFP.B'A'D'}},  \cr  & {V_3} = {V_{A.MA'N}},  \cr  & {V_4} = {V_{PFD'N}},{V_5} = {V_{QMB'E}}. \cr} \)

Dễ thấy \({V_4} = {V_5}\) ( do tính đối xứng của hình lập phương),

\(\eqalign{  & {V_3} = {1 \over 6}AA'.A'M.A'N = {1 \over 6}a.{{3a} \over 2}.{{3a} \over 2} = {{3{a^3}} \over 8},  \cr  & {V_4} = {1 \over 6}PD'.D'F.D'N = {1 \over 6}.{a \over 3}.{a \over 2} .{a \over 2} = {{{a^3}} \over {72}},  \cr  & {V_2} = {V_3} - 2{V_4} = {{3{a^3}} \over 8} - {{2{a^3}} \over {72}} = {{25{a^3}} \over {72}},  \cr  & {V_1} = V - {V_2} = {a^3} - {{25{a^3}} \over {72}} = {{47} \over {72}}{a^3}. \cr} \)

Mặt phẳng \(\left( {AEF} \right)\) chia khối lập phương thành hai phần lần lượt có thể tích là \({V_1} = {{47} \over {72}}{a^3},{V_2} = {{25{a^3}} \over {72}}.\)

Vậy : \({{{V_1}} \over {{V_2}}} = {{47} \over {25}}.\)

soanvan.me