Đề bài

Phân tích đa thức sau thành nhân tử:

a) \(8{x^3} - 27\) ;

b) \(125{y^3} + 1\) ;

c) \(64{x^3} - 27{y^3}\) ;

d) \(27{x^3} + {{{y^3}} \over 8}\) ;

e) \({(x - 2)^3} + 64\) ;

f) \(125 - {(x + 1)^3}\) .

Vận dụng hằng đẳng thức \({A^3} \pm 3{A^2}B + 3A{B^2} \pm {B^3} = {(A \pm B)^3}\)

Lời giải chi tiết

\(\eqalign{  & a)\,\,8{x^3} - 27 = {\left( {2x} \right)^3} - {3^3} = \left( {2x - 3} \right)\left[ {{{\left( {2x} \right)}^2} + 2x.3 + {3^2}} \right]  \cr  & \,\,\,\,\,\, = \left( {2x - 3} \right)\left( {4{x^2} + 6x + 9} \right)  \cr  & b)\,\,125{y^3} + 1 = {\left( {5y} \right)^3} + {1^3} = \left( {5y + 1} \right)\left[ {{{\left( {5y} \right)}^2} - 5y.1 + {1^2}} \right]  \cr  & \,\,\,\,\,\, = \left( {5y + 1} \right)\left( {25{y^2} - 5y + 1} \right)  \cr  & c)\,\,64{x^3} - 27{y^3} = {\left( {4x} \right)^3} - {\left( {3y} \right)^3}  \cr  & \,\,\,\,\, = \left( {4x - 3y} \right)\left[ {{{\left( {4x} \right)}^2} + 4x.3y + {{\left( {3y} \right)}^2}} \right]  \cr  & \,\,\,\, = \left( {4x - 3y} \right)\left( {16{x^2} + 12xy + 9{y^2}} \right)  \cr  & d)\,\,27{x^3} + {{{y^3}} \over 8} = {\left( {3x} \right)^3} + {\left( {{y \over 2}} \right)^3}  \cr  & \,\,\,\,\, = \left( {3x + {y \over 2}} \right)\left[ {{{\left( {3x} \right)}^2} - 3x.{y \over 2} + {{\left( {{y \over 2}} \right)}^2}} \right]  \cr  & \,\,\,\, = \left( {3x + {y \over 2}} \right)\left( {9{x^2} - {3 \over 2}xy + {{{y^2}} \over 4}} \right)  \cr  & e)\,\,{\left( {x - 2} \right)^3} + 64 = {\left( {x - 2} \right)^3} + {4^3}  \cr  & \,\,\,\,\, = \left( {x - 2 + 4} \right)\left[ {{{\left( {x - 2} \right)}^2} - \left( {x - 2} \right).4 + {4^2}} \right]  \cr  & \,\,\,\, = \left( {x + 2} \right)\left( {{x^2} - 4x + 4 - 4x + 8 + 16} \right)  \cr  & \,\,\,\, = \left( {x + 2} \right)\left( {{x^2} - 8x + 28} \right)  \cr  & f)\,\,125 - {\left( {x + 1} \right)^3} = {5^3} - {\left( {x + 1} \right)^3}  \cr  & \,\,\,\,\, = \left[ {5 - \left( {x + 1} \right)} \right]\left[ {{5^2} + 5\left( {x + 1} \right) + {{\left( {x + 1} \right)}^2}} \right]  \cr  & \,\,\,\,\, = \left( {5 - x - 1} \right)\left( {25 + 5x + 5 + {x^2} + 2x + 1} \right)  \cr  & \,\,\,\,\, = \left( {4 - x} \right)\left( {{x^2} + 7x + 31} \right) \cr} \)

soanvan.me