Đề bài

Tìm x, biết:

a) \(x(x - 5) + x - 5 = 0\) ;

b) \(7x(x - 4) - x + 4 = 0\) ;

c) \(({x^2} - 4x) - 5x + 20 = 0\) ;

d) \({x^3} - 3{x^2} + x - 3 = 0\) .

Phối hợp các phương pháp.

Lời giải chi tiết

\(\eqalign{  & a)\,\,x\left( {x - 5} \right) + x - 5 = 0  \cr  & \,\,\,x\left( {x - 5} \right) + \left( {x - 5} \right) = 0  \cr  & \,\,\,\,\,\,\,\,\,\,\,\left( {x - 5} \right)\left( {x + 1} \right) = 0 \cr} \)

\(x - 5 = 0\) hoặc \(x + 1 = 0\)

\(x = 5\) hoặc \(x =  - 1\)

\(\eqalign{  & b)\,\,7x\left( {x - 4} \right) - x + 4 = 0  \cr  & \,\,7x\left( {x - 4} \right) - \left( {x - 4} \right) = 0  \cr  & \,\,\,\,\,\,\,\,\,\,\,\left( {x - 4} \right)\left( {7x - 1} \right) = 0 \cr} \)

\(x - 4 = 0\) hoặc \(7x - 1 = 0\)

\(x - 4 = 0\) hoặc \(7x = 1\)

     \(x = 4\) hoặc \(x = {1 \over 7}\)  

\(\eqalign{  & c)\,\,\left( {{x^2} - 4x} \right) - 5x + 20 = 0  \cr  & \,\,\,\,\,\,x\left( {x - 4} \right) - 5\left( {x - 4} \right) = 0  \cr  & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x - 4} \right)\left( {x - 5} \right) = 0 \cr} \)

\(x - 4 = 0\) hoặc \(x - 5 = 0\)

     \(x = 4\) hoặc \(x = 5\)

\(\eqalign{  & d)\,\,{x^3} - 3{x^2} + x - 3 = 0  \cr  & \,{x^2}\left( {x - 3} \right) + \left( {x - 3} \right) = 0  \cr  & \,\,\,\,\,\,\,\,\left( {x - 3} \right)\left( {{x^2} + 1} \right) = 0 \cr} \)

\(x - 3 = 0\) (vì \({x^2} + 1 > 0\) với mọi x).

     \(x = 3\)  

soanvan.me