Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng đồ thị của hai hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\) đối xứng với nhau qua trục tung.

Lời giải chi tiết:

Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị của hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\), \(M\left( {{x_o},{y_o}} \right)\) là một điểm bất kì.

Khi đó điểm đối xứng với M qua trục tung là \(M'\left( { - {x_o},{y_o}} \right)\).

Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {a^{{x_o}}}= {\left( {{a^{ - 1}}} \right)^{ - {x_o}}} \)

\(\Leftrightarrow {y_o}={\left( {{1 \over a}} \right)^{ - {x_o}}} \Leftrightarrow M' \in \left( {{G_2}} \right)\)

Điều đó chứng tỏ \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục tung.

LG b

Chứng minh rằng đồ thị của hai hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\) đối xứng với nhau qua trục hoành.

Lời giải chi tiết:

Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị của hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\)
Lấy \(M\left( {{x_o},{y_o}} \right)\) tùy ý.

Điểm đối xứng với M qua trục hoành là \(M'\left( {{x_o}, - {y_o}} \right)\).

Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {\log _a}{x_o} =  - {\log _{{1 \over a}}}{x_o} \)

\(\Leftrightarrow  - {y_o} = {\log _{{1 \over a}}}{x_o} \Leftrightarrow M' \in \left( {{G_2}} \right)\)

Vậy \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục hoành.

soanvan.me