Đề bài

Cho tam giác \(ABC\) cân tại \(A.\) Trên tia đối của tia \(AB\) lấy điểm \(D,\) trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AD = AE.\) Gọi \(M\) là trung điểm của \(BC.\) Chứng minh rằng \(D\) đối xứng với \(E\) qua \(AM.\)

Phương pháp giải - Xem chi tiết

+) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy cũng là đường trung trực, đường phân giác.

+) Sử dụng định nghĩa: Hai điểm gọi là đối xứng với nhau qua đường thẳng \(d\) nếu \(d\) là đường trung trực của đoạn thẳng nối hai điểm đó.

Lời giải chi tiết

\(∆ ABC\) cân tại \(A\) có \(AM\) là đường trung tuyến

\(⇒ AM\) là tia phân giác \(\widehat {BAC}\) (tính chất tam giác cân)

\( \Rightarrow \widehat {BAM} = \widehat {MAC}\) \((1)\)

Kéo dài \(MA\) cắt \(DE\) tại \(N\), ta có:

\(\widehat {BAM} = \widehat {DAN}\) (đối đỉnh) \((2)\)

\(\widehat {MAC} = \widehat {NAE}\) (đối đỉnh) \((3)\)

Từ \((1),\) \((2)\) và \((3)\) suy ra: \(\widehat {DAN} = \widehat {NAE}\)

Hay \(AN\) là tia phân giác của góc DAE.

\(∆ ADE\) cân tại \(A\) có \(AN\) là tia phân giác

\(⇒ AN\) là đường trung trực của \(DE\)

hay \(AM\) là đường trung trực của \(DE\)

Vậy \(D\) đối xứng với \(E\) qua \(AM.\)

soanvan.me