Đề bài

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có  \(\overrightarrow{AA'}\) = \(\overrightarrow{a}\), \(\overrightarrow{AB}\) = \(\overrightarrow{b}\), \(\overrightarrow{AC}\) = \(\overrightarrow{c}\). Hãy phân tích (hay biểu thị véctơ \(\overrightarrow{B'C}\), \(\overrightarrow{BC'}\) qua các véctơ \(\overrightarrow{a}\),\(\overrightarrow{b}\), \(\overrightarrow{c}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xen điểm thích hợp để làm xuất hiện các véc tơ \(\overrightarrow{a}\),\(\overrightarrow{b}\), \(\overrightarrow{c}\), sử dụng các cặp vecto bằng nhau và bằng các vecto đã cho.

Lời giải chi tiết

\(\eqalign{& \overrightarrow {B'C} = \overrightarrow {B'A'} + \overrightarrow {A'A} + \overrightarrow {AC} \cr &=  - \overrightarrow {AB}  - \overrightarrow {AA'}  + \overrightarrow {AC} \cr &= - \overrightarrow b - \overrightarrow a + \overrightarrow c \cr & \overrightarrow {BC'} = \overrightarrow {BA} + \overrightarrow {AA'} + \overrightarrow {A'C'} \cr & =  - \overrightarrow {AB}  + \overrightarrow {AA'}  + \overrightarrow {AC} \cr &= - \overrightarrow b + \overrightarrow a + \overrightarrow c \cr} \)

Nhận xét: Ba véctơ \(\overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c}\) ở trên gọi là bộ ba véctơ cơ sở (dùng để phân tích các véctơ khác).

Cách khác:

\(\begin{array}{l}
\overrightarrow {B'C} = \overrightarrow {AC} - \overrightarrow {AB'} \\
= \overrightarrow {AC} - \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right)\\
= \overrightarrow {AC} - \overrightarrow {AB} - \overrightarrow {BB'} \\
= \overrightarrow {AC} - \overrightarrow {AB} - \overrightarrow {AA'} \\
= \overrightarrow c - \overrightarrow b - \overrightarrow a \\
\overrightarrow {BC'} = \overrightarrow {AC'} - \overrightarrow {AB} \\
= \overrightarrow {AA'} + \overrightarrow {A'C'} - \overrightarrow {AB} \\
= \overrightarrow {AA'} + \overrightarrow {AC} - \overrightarrow {AB} \\
= \overrightarrow a + \overrightarrow c - \overrightarrow b
\end{array}\)

 soanvan.me