Đề bài

Biến đổi các biểu thức sau thành phân thức:

a) \({{2x} \over {{1 \over x} + 1}}\) ;                           b) \({{1 + {2 \over {y - 1}}} \over {2y}}\)

c) \({{1 - {2 \over {x + 1}}} \over {1 + {{2 - {x^2}} \over {{x^2} - 1}}}}\) ;                      d) \({{{x \over 4} - 1 + {3 \over {4x}}} \over {{x \over 2} - {6 \over x} + {1 \over 2}}}\) .

Lời giải chi tiết

\(\eqalign{  & a)\,\,{{2x} \over {{1 \over x} + 1}} = 2x:\left( {{1 \over x} + 1} \right) = 2x:{{1 + x} \over x} = 2x.{x \over {1 + x}} = {{2{x^2}} \over {1 + x}}  \cr  & b)\,\,{{1 + {2 \over {y - 1}}} \over {2y}} = \left( {1 + {2 \over {y - 1}}} \right):2y = {{y - 1 + 2} \over {y - 1}}.{1 \over {2y}} = {{y + 1} \over {y - 1}}.{1 \over {2y}} = {{y + 1} \over {2y\left( {y - 1} \right)}}  \cr  & c)\,{{1 - {2 \over {x + 1}}} \over {1 + {{2 - {x^2}} \over {{x^2} - 1}}}} = \left( {1 - {2 \over {x + 1}}} \right):\left( {1 + {{2 - {x^2}} \over {{x^2} - 1}}} \right) = {{x + 1 - 2} \over {x + 1}}:{{{x^2} - 1 + 2 - {x^2}} \over {{x^2} - 1}}  \cr  &  = {{x - 1} \over {x + 1}}:{1 \over {{x^2} - 1}} = {{x - 1} \over {x + 1}}.{{{x^2} - 1} \over 1} = {{\left( {x - 1} \right)\left( {{x^2} - 1} \right)} \over {x + 1}} = {{\left( {x - 1} \right)\left( {x - 1} \right)\left( {x + 1} \right)} \over {x + 1}} = {\left( {x - 1} \right)^2}  \cr  & d)\,\,{{{x \over 4} - 1 + {3 \over {4x}}} \over {{x \over 2} - {6 \over x} + {1 \over 2}}} = \left( {{x \over 4} - 1 + {3 \over {4x}}} \right):\left( {{x \over 2} - {6 \over x} + {1 \over 2}} \right) = {{{x^2} - 4x + 3} \over {4x}}:{{{x^2} - 12 + x} \over {2x}}  \cr  &  = {{{x^2} - 4x + 3} \over {4x}}.{{2x} \over {{x^2} - 12 + x}} = {{\left( {x - 1} \right)\left( {x - 3} \right).2x} \over {4x.\left( {x - 3} \right)\left( {x + 4} \right)}} = {{x - 1} \over {2\left( {x + 4} \right)}} \cr} \)

soanvan.me