Lựa chọn câu để xem lời giải nhanh hơn

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9. Tính xác suất để :

LG a

Số được chọn là số nguyên tố 

Lời giải chi tiết:

Không gian mẫu \(\Omega {\rm{ }} = {\rm{ }}\left\{ {1,2,3,4,5,6,7,8} \right\}\)

A là biến cố “số được chọn là nguyên tố”

Ta có:\( {\Omega _A} = {\rm{ }}\left\{ {2,3,5,7} \right\}\)

Xác suất để số được chọn là số nguyên tố :

\(P\left( A \right) = {{\left| {{\Omega _A}} \right|} \over {\left| \Omega \right|}} = {4 \over 8} = {1 \over 2} = 0,5\)

LG b

Số được chọn chia hết cho 3.

Lời giải chi tiết:

Gọi B là biến cố “số được chọn chia hết cho 3”

Ta có: \({\Omega _B} = {\rm{ }}\left\{ {3,6} \right\}\)

\( \Rightarrow P\left( B \right) = {{\left| {{\Omega _B}} \right|} \over {\left| \Omega \right|}} = {2 \over 8} = 0,25.\)

soanvan.me