Đề bài
Trong một trò chơi điện tử, xác suất để An thắng trong một trận là 0,4 (không có hòa). Hỏi An phải chơi tối thiểu bao nhiêu trận để xác suất An thắng ít nhất một trận trong loạt chơi đó lớn hơn 0,95 ?
Lời giải chi tiết
Gọi n là số trận mà An chơi.
A là biến cố “An thắng ít nhất một trận trong loạt chơi n trận”.
Biến cố A là \(\overline A \) : “An thua cả n trận”.
Ta có: \(P\left( {\overline A } \right) = {\left( {0,6} \right)^n}\)
Vậy \(P(A) = 1 – (0,6)^n\).
Ta cần tìm số nguyên dương n nhỏ nhất thỏa mãn \(P(A) ≥ 0,95\)
\(\begin{array}{l}
\Leftrightarrow 1 - 0,{6^n} \ge 0,95\\
\Leftrightarrow 0,{6^n} \le 0,05
\end{array}\)
Ta có: \({\left( {0,6} \right)^5} \approx {\rm{ }}0,078;{\rm{ }}{\left( {0,6} \right)^6} \approx {\rm{ }}0,047\), \(0,{6^7} \approx 0,028\) nên n nhỏ nhất là 6.
Vậy An phải chơi tối thiểu 6 trận.
soanvan.me