Đề bài

Cho cấp số nhân \(({u_n})\) có \(6{u_2} + {u_5} = 1\) và \(3{u_3} + 2{u_4} =  - 1.\) Hãy tìm số hạng đầu tổng quát của cấp số nhân đó.

Lời giải chi tiết

Gọi q là công bội của cấp số nhân đã cho, ta có

\(\left\{ \matrix{
6{u_2} + {u_5} = 1 \hfill \cr 
3{u_3} + 2{u_4} = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{u_1}.(6q + {q^4}) = 1\,\,\,\,\,\,\,\,\,\;\;\;\,(1) \hfill \cr 
{u_1}.(3{q^2} + 2{q^3}) = - 1\,\,\,\,\,(2) \hfill \cr} \right.\)

Dễ thấy\({u_1}.q \ne 0\). Do đó cộng theo vế (1) và (2) ta được

\({q^3} + 2{q^2} + 3q + 6 = 0 \)

\(\Leftrightarrow \left( {q + 2} \right)\left( {{q^2} + 3} \right) = 0 \)

\(\Leftrightarrow q =  - 2.\)

Từ đó suy ra

                           \({u_1} = {1 \over 4}\)  và \(q =  - 2.\)

Vậy số hạng tổng quát của cấp số nhân đã cho là :

                            \({u_n} = {1 \over 4} \times {( - 2)^{n - 1}}.\)

soanvan.me