Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Không dùng bảng lượng giác và máy tính, hãy so sánh:

a. tan28˚ và sin28˚

b. tan32˚ và cos58˚

Bài 2. Cho ∆ABC vuông tại A. Chứng minh rằng:  \(\tan {{\widehat {ABC}} \over 2} = {{AC} \over {AB + BC}}\)

LG bài 1

Phương pháp giải:

Sử dụng: \(\tan \alpha  = \dfrac{{\sin \alpha }}{{\cos \alpha }}\)

Khi góc α tăng từ 0° đến 90° (0°<α < 90°) thì sinα và tgα tăng

Lời giải chi tiết:

a. Ta có: 0 < cosα < 1 và tanα > 0

\(\eqalign{  &  \Rightarrow \tan \alpha .\cos \alpha  < \tan \alpha   \cr  &  \Rightarrow {{\sin \alpha } \over {\cos \alpha }}.\cos \alpha  < \tan \alpha   \cr  &  \Rightarrow \sin \alpha  < \tan \alpha  \cr} \)

với \(α = 28^o\) , ta có: \(\sin28^o < \tan28^o\).

Cách khác : Dựng ∆ABC vuông tại A và \(\widehat C = 28^\circ \)

Ta có: \(\sin 28^\circ  = {{AB} \over {BC}};\tan 28^\circ  = {{AB} \over {AC}}\)

mà \(BC > AC\) (cạnh huyền > cạnh góc vuông) 

\( \Rightarrow {{AB} \over {BC}} < {{AB} \over {AC}}\,hay\,\sin 28^\circ  < \tan 28^\circ \)

b. \(\cos 58^o = \sin(90^o - 58^o) = \sin 32^o\)

Theo chứng minh câu a : \(\sin32^o < \tan32^o\) hay \(\cos58^o < \tan32^o\)

LG bài 2

Phương pháp giải:

Sử dụng tích chất đường phân giác của tam giác và định nghĩa tỉ số lượng giác của góc nhọn.

Lời giải chi tiết:

Vẽ phân giác BD, ta có: \({{DA} \over {DC}} = {{BA} \over {BC}}\)

\( \Rightarrow {{DA} \over {AB}} = {{DC} \over {BC}} = {{DA + DC} \over {AB + BC}} = {{AC} \over {AB + BC}}\) (1)

Mặt khác \(∆ABD\) vuông tại A, ta có:

\(\tan \widehat {ABD} = \tan {{\widehat {ABC}} \over 2} = {{DA} \over {AB}}\)

Từ (1) và (2) \( \Rightarrow \tan {{\widehat {ABC}} \over 2} = {{AC} \over {AB + BC}}\)

soanvan.me