Đề bài

Một nhóm học sinh gồm \(n\) nam và \(n\) nữ đứng thành hàng ngang. Có bao nhiêu tình huống mà nam, nữ đứng xen kẽ nhau ?

Lời giải chi tiết

Gọi T và G tương ứng là nam và nữ trong hàng.

Theo bài ra với dãy mà nam đứng đầu TGTG…TG có:

+) Vị trí đầu có n cách chọn HS nam.

+) Vị trí thứ hai có n cách chọn HS nữ.

+) Ví trí thứ ba có n-1 cách chọn HS nam.

...

Do đó có:

\(n.n.\left( {n - 1} \right)\left( {n - 1} \right)...2.2.1.1 = {\left( {n!} \right)^2}\) cách.

Tương tự với dãy nữ đứng đầu có \({\left( {n!} \right)^2}\) cách.

Vậy có \(2{\left( {n!} \right)^2}\) cách sắp xếp nam nữ đứng xen kẽ nhau.

soanvan.me