Đề bài
Tìm \(x\) biết:
a) \( \sqrt{16x}= 8\); b) \( \sqrt{4x} = \sqrt{5}\);
c) \( \sqrt{9(x - 1)} = 21\); d) \( \sqrt{4(1 - x)^{2}}- 6 = 0\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Đặt điều kiện để biểu thức có nghĩa: \(\sqrt A \) có nghĩa khi và chỉ khi \(A \ge 0\)
- Bình phương hai vế rồi giải bài toán tìm x.
- Ta sử dụng các cách làm sau:
\(\sqrt A = B\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\)
\(\sqrt A = \sqrt B \left( {A \ge 0;B \ge 0} \right) \Leftrightarrow A = B\)
Lời giải chi tiết
a) Điều kiện: \(x \ge 0\)
\(\sqrt {16x} = 8\)\( \Leftrightarrow {\left( {\sqrt {16x} } \right)^2} = {8^2}\) \( \Leftrightarrow 16x = 64\) \( \Leftrightarrow x = \dfrac{{64}}{{16}} \Leftrightarrow x = 4\) (thỏa mãn điều kiện)
Vậy \(x=4\).
Cách khác:
\(\begin{array}{l}
\sqrt {16x} = 8 \Leftrightarrow \sqrt {16} .\sqrt x = 8\\
\Leftrightarrow 4\sqrt x = 8 \Leftrightarrow \sqrt x = 2\\
\Leftrightarrow x = {2^2} \Leftrightarrow x = 4
\end{array}\)
b) Điều kiện: \(4x \ge 0 \Leftrightarrow x \ge 0\)
\(\sqrt {4x} = \sqrt 5 \) \( \Leftrightarrow {\left( {\sqrt {4x} } \right)^2} = {\left( {\sqrt 5 } \right)^2} \Leftrightarrow 4x = 5 \Leftrightarrow x = \dfrac{5}{4}\) (thỏa mãn điều kiện)
Vậy \(x=\dfrac{5}{4}\).
c) Điều kiện: \(9\left( {x - 1} \right) \ge 0 \Leftrightarrow x - 1 \ge 0 \Leftrightarrow x \ge 1\)
\(\sqrt {9\left( {x - 1} \right)} = 21\)\( \Leftrightarrow 3\sqrt {x - 1} = 21\)\( \Leftrightarrow \sqrt {x - 1} = 7\) \( \Leftrightarrow x - 1 = 49 \Leftrightarrow x = 50\) (thỏa mãn điều kiện)
Vậy \(x=50\).
Cách khác:
\(\begin{array}{l}
\sqrt {9\left( {x - 1} \right)} = 21 \Leftrightarrow 9\left( {x - 1} \right) = {21^2}\\
\Leftrightarrow 9\left( {x - 1} \right) = 441 \Leftrightarrow x - 1 = 49\\
\Leftrightarrow x = 50
\end{array}\)
d) Điều kiện: \(x \in R\) (vì \(4.(1-x)^2\ge 0\) với mọi \(x)\)
\(\sqrt {4{{\left( {1 - x} \right)}^2}} - 6 = 0\)\( \Leftrightarrow 2\sqrt {{{\left( {1 - x} \right)}^2}} = 6\) \( \Leftrightarrow \left| {1 - x} \right| = 3\) \( \Leftrightarrow \left[ \begin{array}{l}1 - x = 3\\1 - x = - 3\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 4\end{array} \right.\)
Vậy \(x=-2;x=4.\)
soanvan.me