Đề bài

Nêu cách tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số. Áp dụng để tìm các đường tiệm cận của hàm số:

\(\displaystyle y = {{2x + 3} \over {2 - x}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Cách tìm tiệm cận ngang:

Đường thẳng \(y=y_0\) là tiệm cận ngang của đồ thị hàm số \(y=f(x)\) nếu ít nhất một trong các điều kiện sau thỏa mãn 

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } f(x) = {y_0} \cr 
& \mathop {\lim }\limits_{x \to + \infty } f(x) = {y_0} \cr} \)

- Cách tìm tiệm cận đứng:

Đường thẳng \(x=x_0\) là tiệm cận đứng của đồ thị hàm số \(y=f(x)\) nếu ít nhất một trong các điều kiện sau thỏa mãn 

\(\eqalign{
& \mathop {\lim }\limits_{x \to x_0^ + } f(x) = - \infty ,\mathop {\lim }\limits_{x \to x_0^ + } f(x) = + \infty \cr 
& \mathop {\lim }\limits_{x \to x_0^ - } f(x) = - \infty ,\mathop {\lim }\limits_{x \to x_0^ - } f(x) = + \infty \cr} \)

Lời giải chi tiết

Ta có:  \(\displaystyle \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x + 3}}{{2 - x}} =  + \infty ;\) \(\displaystyle \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 3}}{{2 - x}} =  - \infty \)

\(\displaystyle \Rightarrow x=2\) là tiệm cận đứng của đồ thị hàm số.

\(\displaystyle \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2x + 3}}{{2 - x}}=\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2 + \frac{3}{x}}}{{\frac{2}{x} - 1}} =  - 2 \) \(\Rightarrow y =  - 2\) là tiệm cận ngang của đồ thị hàm số.

soanvan.me