Đề bài
Cho tam giác ABC vuông tại A đường cao AH có BC = 40 cm, AC = 36 cm. Tính AB, BH, CH, và AH.
Phương pháp giải - Xem chi tiết
Áp dụng định lý Pythagore và hệ thức lượng trong tam giác vuông để tính.
Lời giải chi tiết
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A:
\(A{B^2} = B{C^2} - A{C^2} \)\(\,= {40^2} - {36^2} = 304\)
\(\Rightarrow AB = \sqrt {304} = 4\sqrt {19} \)(cm)
Áp dụng hệ thức lượng trong tam giác vuông ABC đường cao AH:
\(A{C^2} = CH.BC\)
\(\Rightarrow CH = \dfrac{{A{C^2}}}{{BC}} = \dfrac{{{{36}^2}}}{{40}} = \dfrac{{162}}{5}\) (cm)
\(BH = BC - CH = 40 - \dfrac{{162}}{5} = \dfrac{{38}}{5}\)(cm)
\(A{H^2} = BH.CH = \dfrac{{38}}{5}.\dfrac{{162}}{5} = \dfrac{{6156}}{{25}} \)
\(\Rightarrow AH = \dfrac{{18\sqrt {19} }}{5}\)(cm)
soanvan.me